Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> A e. CC ) |
2 |
|
simpr |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( Re ` A ) =/= 0 ) |
3 |
|
fveq2 |
|- ( A = -u _i -> ( Re ` A ) = ( Re ` -u _i ) ) |
4 |
|
ax-icn |
|- _i e. CC |
5 |
4
|
renegi |
|- ( Re ` -u _i ) = -u ( Re ` _i ) |
6 |
|
rei |
|- ( Re ` _i ) = 0 |
7 |
6
|
negeqi |
|- -u ( Re ` _i ) = -u 0 |
8 |
|
neg0 |
|- -u 0 = 0 |
9 |
5 7 8
|
3eqtri |
|- ( Re ` -u _i ) = 0 |
10 |
3 9
|
eqtrdi |
|- ( A = -u _i -> ( Re ` A ) = 0 ) |
11 |
10
|
necon3i |
|- ( ( Re ` A ) =/= 0 -> A =/= -u _i ) |
12 |
2 11
|
syl |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> A =/= -u _i ) |
13 |
|
fveq2 |
|- ( A = _i -> ( Re ` A ) = ( Re ` _i ) ) |
14 |
13 6
|
eqtrdi |
|- ( A = _i -> ( Re ` A ) = 0 ) |
15 |
14
|
necon3i |
|- ( ( Re ` A ) =/= 0 -> A =/= _i ) |
16 |
2 15
|
syl |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> A =/= _i ) |
17 |
|
atandm |
|- ( A e. dom arctan <-> ( A e. CC /\ A =/= -u _i /\ A =/= _i ) ) |
18 |
1 12 16 17
|
syl3anbrc |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> A e. dom arctan ) |
19 |
|
halfcl |
|- ( _i e. CC -> ( _i / 2 ) e. CC ) |
20 |
4 19
|
ax-mp |
|- ( _i / 2 ) e. CC |
21 |
|
ax-1cn |
|- 1 e. CC |
22 |
|
mulcl |
|- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
23 |
4 1 22
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( _i x. A ) e. CC ) |
24 |
|
subcl |
|- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 - ( _i x. A ) ) e. CC ) |
25 |
21 23 24
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 1 - ( _i x. A ) ) e. CC ) |
26 |
|
atandm2 |
|- ( A e. dom arctan <-> ( A e. CC /\ ( 1 - ( _i x. A ) ) =/= 0 /\ ( 1 + ( _i x. A ) ) =/= 0 ) ) |
27 |
18 26
|
sylib |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( A e. CC /\ ( 1 - ( _i x. A ) ) =/= 0 /\ ( 1 + ( _i x. A ) ) =/= 0 ) ) |
28 |
27
|
simp2d |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 1 - ( _i x. A ) ) =/= 0 ) |
29 |
25 28
|
logcld |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( log ` ( 1 - ( _i x. A ) ) ) e. CC ) |
30 |
|
addcl |
|- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 + ( _i x. A ) ) e. CC ) |
31 |
21 23 30
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 1 + ( _i x. A ) ) e. CC ) |
32 |
27
|
simp3d |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 1 + ( _i x. A ) ) =/= 0 ) |
33 |
31 32
|
logcld |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( log ` ( 1 + ( _i x. A ) ) ) e. CC ) |
34 |
29 33
|
subcld |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) e. CC ) |
35 |
|
cjmul |
|- ( ( ( _i / 2 ) e. CC /\ ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) e. CC ) -> ( * ` ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) = ( ( * ` ( _i / 2 ) ) x. ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) ) |
36 |
20 34 35
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) = ( ( * ` ( _i / 2 ) ) x. ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) ) |
37 |
|
2ne0 |
|- 2 =/= 0 |
38 |
|
2cn |
|- 2 e. CC |
39 |
4 38
|
cjdivi |
|- ( 2 =/= 0 -> ( * ` ( _i / 2 ) ) = ( ( * ` _i ) / ( * ` 2 ) ) ) |
40 |
37 39
|
ax-mp |
|- ( * ` ( _i / 2 ) ) = ( ( * ` _i ) / ( * ` 2 ) ) |
41 |
|
divneg |
|- ( ( _i e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> -u ( _i / 2 ) = ( -u _i / 2 ) ) |
42 |
4 38 37 41
|
mp3an |
|- -u ( _i / 2 ) = ( -u _i / 2 ) |
43 |
|
cji |
|- ( * ` _i ) = -u _i |
44 |
|
2re |
|- 2 e. RR |
45 |
|
cjre |
|- ( 2 e. RR -> ( * ` 2 ) = 2 ) |
46 |
44 45
|
ax-mp |
|- ( * ` 2 ) = 2 |
47 |
43 46
|
oveq12i |
|- ( ( * ` _i ) / ( * ` 2 ) ) = ( -u _i / 2 ) |
48 |
42 47
|
eqtr4i |
|- -u ( _i / 2 ) = ( ( * ` _i ) / ( * ` 2 ) ) |
49 |
40 48
|
eqtr4i |
|- ( * ` ( _i / 2 ) ) = -u ( _i / 2 ) |
50 |
49
|
oveq1i |
|- ( ( * ` ( _i / 2 ) ) x. ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) = ( -u ( _i / 2 ) x. ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) |
51 |
34
|
cjcld |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) e. CC ) |
52 |
|
mulneg12 |
|- ( ( ( _i / 2 ) e. CC /\ ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) e. CC ) -> ( -u ( _i / 2 ) x. ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) = ( ( _i / 2 ) x. -u ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) ) |
53 |
20 51 52
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( -u ( _i / 2 ) x. ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) = ( ( _i / 2 ) x. -u ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) ) |
54 |
50 53
|
eqtrid |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( * ` ( _i / 2 ) ) x. ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) = ( ( _i / 2 ) x. -u ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) ) |
55 |
|
cjsub |
|- ( ( ( log ` ( 1 - ( _i x. A ) ) ) e. CC /\ ( log ` ( 1 + ( _i x. A ) ) ) e. CC ) -> ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = ( ( * ` ( log ` ( 1 - ( _i x. A ) ) ) ) - ( * ` ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) |
56 |
29 33 55
|
syl2anc |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = ( ( * ` ( log ` ( 1 - ( _i x. A ) ) ) ) - ( * ` ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) |
57 |
|
imsub |
|- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( Im ` ( 1 - ( _i x. A ) ) ) = ( ( Im ` 1 ) - ( Im ` ( _i x. A ) ) ) ) |
58 |
21 23 57
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( Im ` ( 1 - ( _i x. A ) ) ) = ( ( Im ` 1 ) - ( Im ` ( _i x. A ) ) ) ) |
59 |
|
reim |
|- ( A e. CC -> ( Re ` A ) = ( Im ` ( _i x. A ) ) ) |
60 |
59
|
adantr |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( Re ` A ) = ( Im ` ( _i x. A ) ) ) |
61 |
60
|
oveq2d |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( Im ` 1 ) - ( Re ` A ) ) = ( ( Im ` 1 ) - ( Im ` ( _i x. A ) ) ) ) |
62 |
58 61
|
eqtr4d |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( Im ` ( 1 - ( _i x. A ) ) ) = ( ( Im ` 1 ) - ( Re ` A ) ) ) |
63 |
|
df-neg |
|- -u ( Re ` A ) = ( 0 - ( Re ` A ) ) |
64 |
|
im1 |
|- ( Im ` 1 ) = 0 |
65 |
64
|
oveq1i |
|- ( ( Im ` 1 ) - ( Re ` A ) ) = ( 0 - ( Re ` A ) ) |
66 |
63 65
|
eqtr4i |
|- -u ( Re ` A ) = ( ( Im ` 1 ) - ( Re ` A ) ) |
67 |
62 66
|
eqtr4di |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( Im ` ( 1 - ( _i x. A ) ) ) = -u ( Re ` A ) ) |
68 |
|
recl |
|- ( A e. CC -> ( Re ` A ) e. RR ) |
69 |
68
|
adantr |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( Re ` A ) e. RR ) |
70 |
69
|
recnd |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( Re ` A ) e. CC ) |
71 |
70 2
|
negne0d |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> -u ( Re ` A ) =/= 0 ) |
72 |
67 71
|
eqnetrd |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( Im ` ( 1 - ( _i x. A ) ) ) =/= 0 ) |
73 |
|
logcj |
|- ( ( ( 1 - ( _i x. A ) ) e. CC /\ ( Im ` ( 1 - ( _i x. A ) ) ) =/= 0 ) -> ( log ` ( * ` ( 1 - ( _i x. A ) ) ) ) = ( * ` ( log ` ( 1 - ( _i x. A ) ) ) ) ) |
74 |
25 72 73
|
syl2anc |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( log ` ( * ` ( 1 - ( _i x. A ) ) ) ) = ( * ` ( log ` ( 1 - ( _i x. A ) ) ) ) ) |
75 |
|
cjsub |
|- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( * ` ( 1 - ( _i x. A ) ) ) = ( ( * ` 1 ) - ( * ` ( _i x. A ) ) ) ) |
76 |
21 23 75
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` ( 1 - ( _i x. A ) ) ) = ( ( * ` 1 ) - ( * ` ( _i x. A ) ) ) ) |
77 |
|
1re |
|- 1 e. RR |
78 |
|
cjre |
|- ( 1 e. RR -> ( * ` 1 ) = 1 ) |
79 |
77 78
|
mp1i |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` 1 ) = 1 ) |
80 |
|
cjmul |
|- ( ( _i e. CC /\ A e. CC ) -> ( * ` ( _i x. A ) ) = ( ( * ` _i ) x. ( * ` A ) ) ) |
81 |
4 1 80
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` ( _i x. A ) ) = ( ( * ` _i ) x. ( * ` A ) ) ) |
82 |
43
|
oveq1i |
|- ( ( * ` _i ) x. ( * ` A ) ) = ( -u _i x. ( * ` A ) ) |
83 |
|
cjcl |
|- ( A e. CC -> ( * ` A ) e. CC ) |
84 |
83
|
adantr |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` A ) e. CC ) |
85 |
|
mulneg1 |
|- ( ( _i e. CC /\ ( * ` A ) e. CC ) -> ( -u _i x. ( * ` A ) ) = -u ( _i x. ( * ` A ) ) ) |
86 |
4 84 85
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( -u _i x. ( * ` A ) ) = -u ( _i x. ( * ` A ) ) ) |
87 |
82 86
|
eqtrid |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( * ` _i ) x. ( * ` A ) ) = -u ( _i x. ( * ` A ) ) ) |
88 |
81 87
|
eqtrd |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` ( _i x. A ) ) = -u ( _i x. ( * ` A ) ) ) |
89 |
79 88
|
oveq12d |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( * ` 1 ) - ( * ` ( _i x. A ) ) ) = ( 1 - -u ( _i x. ( * ` A ) ) ) ) |
90 |
|
mulcl |
|- ( ( _i e. CC /\ ( * ` A ) e. CC ) -> ( _i x. ( * ` A ) ) e. CC ) |
91 |
4 84 90
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( _i x. ( * ` A ) ) e. CC ) |
92 |
|
subneg |
|- ( ( 1 e. CC /\ ( _i x. ( * ` A ) ) e. CC ) -> ( 1 - -u ( _i x. ( * ` A ) ) ) = ( 1 + ( _i x. ( * ` A ) ) ) ) |
93 |
21 91 92
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 1 - -u ( _i x. ( * ` A ) ) ) = ( 1 + ( _i x. ( * ` A ) ) ) ) |
94 |
76 89 93
|
3eqtrd |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` ( 1 - ( _i x. A ) ) ) = ( 1 + ( _i x. ( * ` A ) ) ) ) |
95 |
94
|
fveq2d |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( log ` ( * ` ( 1 - ( _i x. A ) ) ) ) = ( log ` ( 1 + ( _i x. ( * ` A ) ) ) ) ) |
96 |
74 95
|
eqtr3d |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` ( log ` ( 1 - ( _i x. A ) ) ) ) = ( log ` ( 1 + ( _i x. ( * ` A ) ) ) ) ) |
97 |
|
imadd |
|- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( Im ` ( 1 + ( _i x. A ) ) ) = ( ( Im ` 1 ) + ( Im ` ( _i x. A ) ) ) ) |
98 |
21 23 97
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( Im ` ( 1 + ( _i x. A ) ) ) = ( ( Im ` 1 ) + ( Im ` ( _i x. A ) ) ) ) |
99 |
60
|
oveq2d |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 0 + ( Re ` A ) ) = ( 0 + ( Im ` ( _i x. A ) ) ) ) |
100 |
64
|
oveq1i |
|- ( ( Im ` 1 ) + ( Im ` ( _i x. A ) ) ) = ( 0 + ( Im ` ( _i x. A ) ) ) |
101 |
99 100
|
eqtr4di |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 0 + ( Re ` A ) ) = ( ( Im ` 1 ) + ( Im ` ( _i x. A ) ) ) ) |
102 |
70
|
addid2d |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 0 + ( Re ` A ) ) = ( Re ` A ) ) |
103 |
98 101 102
|
3eqtr2d |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( Im ` ( 1 + ( _i x. A ) ) ) = ( Re ` A ) ) |
104 |
103 2
|
eqnetrd |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( Im ` ( 1 + ( _i x. A ) ) ) =/= 0 ) |
105 |
|
logcj |
|- ( ( ( 1 + ( _i x. A ) ) e. CC /\ ( Im ` ( 1 + ( _i x. A ) ) ) =/= 0 ) -> ( log ` ( * ` ( 1 + ( _i x. A ) ) ) ) = ( * ` ( log ` ( 1 + ( _i x. A ) ) ) ) ) |
106 |
31 104 105
|
syl2anc |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( log ` ( * ` ( 1 + ( _i x. A ) ) ) ) = ( * ` ( log ` ( 1 + ( _i x. A ) ) ) ) ) |
107 |
|
cjadd |
|- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( * ` ( 1 + ( _i x. A ) ) ) = ( ( * ` 1 ) + ( * ` ( _i x. A ) ) ) ) |
108 |
21 23 107
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` ( 1 + ( _i x. A ) ) ) = ( ( * ` 1 ) + ( * ` ( _i x. A ) ) ) ) |
109 |
79 88
|
oveq12d |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( * ` 1 ) + ( * ` ( _i x. A ) ) ) = ( 1 + -u ( _i x. ( * ` A ) ) ) ) |
110 |
|
negsub |
|- ( ( 1 e. CC /\ ( _i x. ( * ` A ) ) e. CC ) -> ( 1 + -u ( _i x. ( * ` A ) ) ) = ( 1 - ( _i x. ( * ` A ) ) ) ) |
111 |
21 91 110
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 1 + -u ( _i x. ( * ` A ) ) ) = ( 1 - ( _i x. ( * ` A ) ) ) ) |
112 |
108 109 111
|
3eqtrd |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` ( 1 + ( _i x. A ) ) ) = ( 1 - ( _i x. ( * ` A ) ) ) ) |
113 |
112
|
fveq2d |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( log ` ( * ` ( 1 + ( _i x. A ) ) ) ) = ( log ` ( 1 - ( _i x. ( * ` A ) ) ) ) ) |
114 |
106 113
|
eqtr3d |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` ( log ` ( 1 + ( _i x. A ) ) ) ) = ( log ` ( 1 - ( _i x. ( * ` A ) ) ) ) ) |
115 |
96 114
|
oveq12d |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( * ` ( log ` ( 1 - ( _i x. A ) ) ) ) - ( * ` ( log ` ( 1 + ( _i x. A ) ) ) ) ) = ( ( log ` ( 1 + ( _i x. ( * ` A ) ) ) ) - ( log ` ( 1 - ( _i x. ( * ` A ) ) ) ) ) ) |
116 |
56 115
|
eqtrd |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = ( ( log ` ( 1 + ( _i x. ( * ` A ) ) ) ) - ( log ` ( 1 - ( _i x. ( * ` A ) ) ) ) ) ) |
117 |
116
|
negeqd |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> -u ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = -u ( ( log ` ( 1 + ( _i x. ( * ` A ) ) ) ) - ( log ` ( 1 - ( _i x. ( * ` A ) ) ) ) ) ) |
118 |
|
addcl |
|- ( ( 1 e. CC /\ ( _i x. ( * ` A ) ) e. CC ) -> ( 1 + ( _i x. ( * ` A ) ) ) e. CC ) |
119 |
21 91 118
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 1 + ( _i x. ( * ` A ) ) ) e. CC ) |
120 |
|
atandmcj |
|- ( A e. dom arctan -> ( * ` A ) e. dom arctan ) |
121 |
18 120
|
syl |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` A ) e. dom arctan ) |
122 |
|
atandm2 |
|- ( ( * ` A ) e. dom arctan <-> ( ( * ` A ) e. CC /\ ( 1 - ( _i x. ( * ` A ) ) ) =/= 0 /\ ( 1 + ( _i x. ( * ` A ) ) ) =/= 0 ) ) |
123 |
122
|
simp3bi |
|- ( ( * ` A ) e. dom arctan -> ( 1 + ( _i x. ( * ` A ) ) ) =/= 0 ) |
124 |
121 123
|
syl |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 1 + ( _i x. ( * ` A ) ) ) =/= 0 ) |
125 |
119 124
|
logcld |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( log ` ( 1 + ( _i x. ( * ` A ) ) ) ) e. CC ) |
126 |
|
subcl |
|- ( ( 1 e. CC /\ ( _i x. ( * ` A ) ) e. CC ) -> ( 1 - ( _i x. ( * ` A ) ) ) e. CC ) |
127 |
21 91 126
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 1 - ( _i x. ( * ` A ) ) ) e. CC ) |
128 |
122
|
simp2bi |
|- ( ( * ` A ) e. dom arctan -> ( 1 - ( _i x. ( * ` A ) ) ) =/= 0 ) |
129 |
121 128
|
syl |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 1 - ( _i x. ( * ` A ) ) ) =/= 0 ) |
130 |
127 129
|
logcld |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( log ` ( 1 - ( _i x. ( * ` A ) ) ) ) e. CC ) |
131 |
125 130
|
negsubdi2d |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> -u ( ( log ` ( 1 + ( _i x. ( * ` A ) ) ) ) - ( log ` ( 1 - ( _i x. ( * ` A ) ) ) ) ) = ( ( log ` ( 1 - ( _i x. ( * ` A ) ) ) ) - ( log ` ( 1 + ( _i x. ( * ` A ) ) ) ) ) ) |
132 |
117 131
|
eqtrd |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> -u ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = ( ( log ` ( 1 - ( _i x. ( * ` A ) ) ) ) - ( log ` ( 1 + ( _i x. ( * ` A ) ) ) ) ) ) |
133 |
132
|
oveq2d |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( _i / 2 ) x. -u ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. ( * ` A ) ) ) ) - ( log ` ( 1 + ( _i x. ( * ` A ) ) ) ) ) ) ) |
134 |
36 54 133
|
3eqtrd |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. ( * ` A ) ) ) ) - ( log ` ( 1 + ( _i x. ( * ` A ) ) ) ) ) ) ) |
135 |
|
atanval |
|- ( A e. dom arctan -> ( arctan ` A ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) |
136 |
18 135
|
syl |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( arctan ` A ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) |
137 |
136
|
fveq2d |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` ( arctan ` A ) ) = ( * ` ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) ) |
138 |
|
atanval |
|- ( ( * ` A ) e. dom arctan -> ( arctan ` ( * ` A ) ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. ( * ` A ) ) ) ) - ( log ` ( 1 + ( _i x. ( * ` A ) ) ) ) ) ) ) |
139 |
121 138
|
syl |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( arctan ` ( * ` A ) ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. ( * ` A ) ) ) ) - ( log ` ( 1 + ( _i x. ( * ` A ) ) ) ) ) ) ) |
140 |
134 137 139
|
3eqtr4d |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` ( arctan ` A ) ) = ( arctan ` ( * ` A ) ) ) |
141 |
18 140
|
jca |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( A e. dom arctan /\ ( * ` ( arctan ` A ) ) = ( arctan ` ( * ` A ) ) ) ) |