Metamath Proof Explorer


Theorem atancl

Description: Closure for the arctan function. (Contributed by Mario Carneiro, 31-Mar-2015)

Ref Expression
Assertion atancl
|- ( A e. dom arctan -> ( arctan ` A ) e. CC )

Proof

Step Hyp Ref Expression
1 atanf
 |-  arctan : ( CC \ { -u _i , _i } ) --> CC
2 1 ffvelrni
 |-  ( A e. ( CC \ { -u _i , _i } ) -> ( arctan ` A ) e. CC )
3 1 fdmi
 |-  dom arctan = ( CC \ { -u _i , _i } )
4 2 3 eleq2s
 |-  ( A e. dom arctan -> ( arctan ` A ) e. CC )