Step |
Hyp |
Ref |
Expression |
1 |
|
atansopn.d |
|- D = ( CC \ ( -oo (,] 0 ) ) |
2 |
|
atansopn.s |
|- S = { y e. CC | ( 1 + ( y ^ 2 ) ) e. D } |
3 |
|
ssid |
|- CC C_ CC |
4 |
|
atanf |
|- arctan : ( CC \ { -u _i , _i } ) --> CC |
5 |
1 2
|
atansssdm |
|- S C_ dom arctan |
6 |
4
|
fdmi |
|- dom arctan = ( CC \ { -u _i , _i } ) |
7 |
5 6
|
sseqtri |
|- S C_ ( CC \ { -u _i , _i } ) |
8 |
|
fssres |
|- ( ( arctan : ( CC \ { -u _i , _i } ) --> CC /\ S C_ ( CC \ { -u _i , _i } ) ) -> ( arctan |` S ) : S --> CC ) |
9 |
4 7 8
|
mp2an |
|- ( arctan |` S ) : S --> CC |
10 |
2
|
ssrab3 |
|- S C_ CC |
11 |
|
ovex |
|- ( 1 / ( 1 + ( x ^ 2 ) ) ) e. _V |
12 |
1 2
|
dvatan |
|- ( CC _D ( arctan |` S ) ) = ( x e. S |-> ( 1 / ( 1 + ( x ^ 2 ) ) ) ) |
13 |
11 12
|
dmmpti |
|- dom ( CC _D ( arctan |` S ) ) = S |
14 |
|
dvcn |
|- ( ( ( CC C_ CC /\ ( arctan |` S ) : S --> CC /\ S C_ CC ) /\ dom ( CC _D ( arctan |` S ) ) = S ) -> ( arctan |` S ) e. ( S -cn-> CC ) ) |
15 |
13 14
|
mpan2 |
|- ( ( CC C_ CC /\ ( arctan |` S ) : S --> CC /\ S C_ CC ) -> ( arctan |` S ) e. ( S -cn-> CC ) ) |
16 |
3 9 10 15
|
mp3an |
|- ( arctan |` S ) e. ( S -cn-> CC ) |