Step |
Hyp |
Ref |
Expression |
1 |
|
eldif |
|- ( A e. ( CC \ { -u _i , _i } ) <-> ( A e. CC /\ -. A e. { -u _i , _i } ) ) |
2 |
|
elprg |
|- ( A e. CC -> ( A e. { -u _i , _i } <-> ( A = -u _i \/ A = _i ) ) ) |
3 |
2
|
notbid |
|- ( A e. CC -> ( -. A e. { -u _i , _i } <-> -. ( A = -u _i \/ A = _i ) ) ) |
4 |
|
neanior |
|- ( ( A =/= -u _i /\ A =/= _i ) <-> -. ( A = -u _i \/ A = _i ) ) |
5 |
3 4
|
bitr4di |
|- ( A e. CC -> ( -. A e. { -u _i , _i } <-> ( A =/= -u _i /\ A =/= _i ) ) ) |
6 |
5
|
pm5.32i |
|- ( ( A e. CC /\ -. A e. { -u _i , _i } ) <-> ( A e. CC /\ ( A =/= -u _i /\ A =/= _i ) ) ) |
7 |
1 6
|
bitri |
|- ( A e. ( CC \ { -u _i , _i } ) <-> ( A e. CC /\ ( A =/= -u _i /\ A =/= _i ) ) ) |
8 |
|
ovex |
|- ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) ) ) e. _V |
9 |
|
df-atan |
|- arctan = ( x e. ( CC \ { -u _i , _i } ) |-> ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) ) ) ) |
10 |
8 9
|
dmmpti |
|- dom arctan = ( CC \ { -u _i , _i } ) |
11 |
10
|
eleq2i |
|- ( A e. dom arctan <-> A e. ( CC \ { -u _i , _i } ) ) |
12 |
|
3anass |
|- ( ( A e. CC /\ A =/= -u _i /\ A =/= _i ) <-> ( A e. CC /\ ( A =/= -u _i /\ A =/= _i ) ) ) |
13 |
7 11 12
|
3bitr4i |
|- ( A e. dom arctan <-> ( A e. CC /\ A =/= -u _i /\ A =/= _i ) ) |