| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eldif |  |-  ( A e. ( CC \ { -u _i , _i } ) <-> ( A e. CC /\ -. A e. { -u _i , _i } ) ) | 
						
							| 2 |  | elprg |  |-  ( A e. CC -> ( A e. { -u _i , _i } <-> ( A = -u _i \/ A = _i ) ) ) | 
						
							| 3 | 2 | notbid |  |-  ( A e. CC -> ( -. A e. { -u _i , _i } <-> -. ( A = -u _i \/ A = _i ) ) ) | 
						
							| 4 |  | neanior |  |-  ( ( A =/= -u _i /\ A =/= _i ) <-> -. ( A = -u _i \/ A = _i ) ) | 
						
							| 5 | 3 4 | bitr4di |  |-  ( A e. CC -> ( -. A e. { -u _i , _i } <-> ( A =/= -u _i /\ A =/= _i ) ) ) | 
						
							| 6 | 5 | pm5.32i |  |-  ( ( A e. CC /\ -. A e. { -u _i , _i } ) <-> ( A e. CC /\ ( A =/= -u _i /\ A =/= _i ) ) ) | 
						
							| 7 | 1 6 | bitri |  |-  ( A e. ( CC \ { -u _i , _i } ) <-> ( A e. CC /\ ( A =/= -u _i /\ A =/= _i ) ) ) | 
						
							| 8 |  | ovex |  |-  ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) ) ) e. _V | 
						
							| 9 |  | df-atan |  |-  arctan = ( x e. ( CC \ { -u _i , _i } ) |-> ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) ) ) ) | 
						
							| 10 | 8 9 | dmmpti |  |-  dom arctan = ( CC \ { -u _i , _i } ) | 
						
							| 11 | 10 | eleq2i |  |-  ( A e. dom arctan <-> A e. ( CC \ { -u _i , _i } ) ) | 
						
							| 12 |  | 3anass |  |-  ( ( A e. CC /\ A =/= -u _i /\ A =/= _i ) <-> ( A e. CC /\ ( A =/= -u _i /\ A =/= _i ) ) ) | 
						
							| 13 | 7 11 12 | 3bitr4i |  |-  ( A e. dom arctan <-> ( A e. CC /\ A =/= -u _i /\ A =/= _i ) ) |