Step |
Hyp |
Ref |
Expression |
1 |
|
atandm |
|- ( A e. dom arctan <-> ( A e. CC /\ A =/= -u _i /\ A =/= _i ) ) |
2 |
|
3anass |
|- ( ( A e. CC /\ ( 1 - ( _i x. A ) ) =/= 0 /\ ( 1 + ( _i x. A ) ) =/= 0 ) <-> ( A e. CC /\ ( ( 1 - ( _i x. A ) ) =/= 0 /\ ( 1 + ( _i x. A ) ) =/= 0 ) ) ) |
3 |
|
ax-1cn |
|- 1 e. CC |
4 |
|
ax-icn |
|- _i e. CC |
5 |
|
mulcl |
|- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
6 |
4 5
|
mpan |
|- ( A e. CC -> ( _i x. A ) e. CC ) |
7 |
|
subeq0 |
|- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( ( 1 - ( _i x. A ) ) = 0 <-> 1 = ( _i x. A ) ) ) |
8 |
3 6 7
|
sylancr |
|- ( A e. CC -> ( ( 1 - ( _i x. A ) ) = 0 <-> 1 = ( _i x. A ) ) ) |
9 |
4 4
|
mulneg2i |
|- ( _i x. -u _i ) = -u ( _i x. _i ) |
10 |
|
ixi |
|- ( _i x. _i ) = -u 1 |
11 |
10
|
negeqi |
|- -u ( _i x. _i ) = -u -u 1 |
12 |
|
negneg1e1 |
|- -u -u 1 = 1 |
13 |
9 11 12
|
3eqtri |
|- ( _i x. -u _i ) = 1 |
14 |
13
|
eqeq2i |
|- ( ( _i x. A ) = ( _i x. -u _i ) <-> ( _i x. A ) = 1 ) |
15 |
|
eqcom |
|- ( ( _i x. A ) = 1 <-> 1 = ( _i x. A ) ) |
16 |
14 15
|
bitri |
|- ( ( _i x. A ) = ( _i x. -u _i ) <-> 1 = ( _i x. A ) ) |
17 |
8 16
|
bitr4di |
|- ( A e. CC -> ( ( 1 - ( _i x. A ) ) = 0 <-> ( _i x. A ) = ( _i x. -u _i ) ) ) |
18 |
|
id |
|- ( A e. CC -> A e. CC ) |
19 |
4
|
negcli |
|- -u _i e. CC |
20 |
19
|
a1i |
|- ( A e. CC -> -u _i e. CC ) |
21 |
4
|
a1i |
|- ( A e. CC -> _i e. CC ) |
22 |
|
ine0 |
|- _i =/= 0 |
23 |
22
|
a1i |
|- ( A e. CC -> _i =/= 0 ) |
24 |
18 20 21 23
|
mulcand |
|- ( A e. CC -> ( ( _i x. A ) = ( _i x. -u _i ) <-> A = -u _i ) ) |
25 |
17 24
|
bitrd |
|- ( A e. CC -> ( ( 1 - ( _i x. A ) ) = 0 <-> A = -u _i ) ) |
26 |
25
|
necon3bid |
|- ( A e. CC -> ( ( 1 - ( _i x. A ) ) =/= 0 <-> A =/= -u _i ) ) |
27 |
|
addcom |
|- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 + ( _i x. A ) ) = ( ( _i x. A ) + 1 ) ) |
28 |
3 6 27
|
sylancr |
|- ( A e. CC -> ( 1 + ( _i x. A ) ) = ( ( _i x. A ) + 1 ) ) |
29 |
|
subneg |
|- ( ( ( _i x. A ) e. CC /\ 1 e. CC ) -> ( ( _i x. A ) - -u 1 ) = ( ( _i x. A ) + 1 ) ) |
30 |
6 3 29
|
sylancl |
|- ( A e. CC -> ( ( _i x. A ) - -u 1 ) = ( ( _i x. A ) + 1 ) ) |
31 |
28 30
|
eqtr4d |
|- ( A e. CC -> ( 1 + ( _i x. A ) ) = ( ( _i x. A ) - -u 1 ) ) |
32 |
31
|
eqeq1d |
|- ( A e. CC -> ( ( 1 + ( _i x. A ) ) = 0 <-> ( ( _i x. A ) - -u 1 ) = 0 ) ) |
33 |
3
|
negcli |
|- -u 1 e. CC |
34 |
|
subeq0 |
|- ( ( ( _i x. A ) e. CC /\ -u 1 e. CC ) -> ( ( ( _i x. A ) - -u 1 ) = 0 <-> ( _i x. A ) = -u 1 ) ) |
35 |
6 33 34
|
sylancl |
|- ( A e. CC -> ( ( ( _i x. A ) - -u 1 ) = 0 <-> ( _i x. A ) = -u 1 ) ) |
36 |
32 35
|
bitrd |
|- ( A e. CC -> ( ( 1 + ( _i x. A ) ) = 0 <-> ( _i x. A ) = -u 1 ) ) |
37 |
10
|
eqeq2i |
|- ( ( _i x. A ) = ( _i x. _i ) <-> ( _i x. A ) = -u 1 ) |
38 |
36 37
|
bitr4di |
|- ( A e. CC -> ( ( 1 + ( _i x. A ) ) = 0 <-> ( _i x. A ) = ( _i x. _i ) ) ) |
39 |
18 21 21 23
|
mulcand |
|- ( A e. CC -> ( ( _i x. A ) = ( _i x. _i ) <-> A = _i ) ) |
40 |
38 39
|
bitrd |
|- ( A e. CC -> ( ( 1 + ( _i x. A ) ) = 0 <-> A = _i ) ) |
41 |
40
|
necon3bid |
|- ( A e. CC -> ( ( 1 + ( _i x. A ) ) =/= 0 <-> A =/= _i ) ) |
42 |
26 41
|
anbi12d |
|- ( A e. CC -> ( ( ( 1 - ( _i x. A ) ) =/= 0 /\ ( 1 + ( _i x. A ) ) =/= 0 ) <-> ( A =/= -u _i /\ A =/= _i ) ) ) |
43 |
42
|
pm5.32i |
|- ( ( A e. CC /\ ( ( 1 - ( _i x. A ) ) =/= 0 /\ ( 1 + ( _i x. A ) ) =/= 0 ) ) <-> ( A e. CC /\ ( A =/= -u _i /\ A =/= _i ) ) ) |
44 |
|
3anass |
|- ( ( A e. CC /\ A =/= -u _i /\ A =/= _i ) <-> ( A e. CC /\ ( A =/= -u _i /\ A =/= _i ) ) ) |
45 |
43 44
|
bitr4i |
|- ( ( A e. CC /\ ( ( 1 - ( _i x. A ) ) =/= 0 /\ ( 1 + ( _i x. A ) ) =/= 0 ) ) <-> ( A e. CC /\ A =/= -u _i /\ A =/= _i ) ) |
46 |
2 45
|
bitri |
|- ( ( A e. CC /\ ( 1 - ( _i x. A ) ) =/= 0 /\ ( 1 + ( _i x. A ) ) =/= 0 ) <-> ( A e. CC /\ A =/= -u _i /\ A =/= _i ) ) |
47 |
1 46
|
bitr4i |
|- ( A e. dom arctan <-> ( A e. CC /\ ( 1 - ( _i x. A ) ) =/= 0 /\ ( 1 + ( _i x. A ) ) =/= 0 ) ) |