| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 3anass |  |-  ( ( A e. CC /\ A =/= -u _i /\ A =/= _i ) <-> ( A e. CC /\ ( A =/= -u _i /\ A =/= _i ) ) ) | 
						
							| 2 |  | atandm |  |-  ( A e. dom arctan <-> ( A e. CC /\ A =/= -u _i /\ A =/= _i ) ) | 
						
							| 3 |  | ax-icn |  |-  _i e. CC | 
						
							| 4 |  | sqeqor |  |-  ( ( A e. CC /\ _i e. CC ) -> ( ( A ^ 2 ) = ( _i ^ 2 ) <-> ( A = _i \/ A = -u _i ) ) ) | 
						
							| 5 | 3 4 | mpan2 |  |-  ( A e. CC -> ( ( A ^ 2 ) = ( _i ^ 2 ) <-> ( A = _i \/ A = -u _i ) ) ) | 
						
							| 6 |  | i2 |  |-  ( _i ^ 2 ) = -u 1 | 
						
							| 7 | 6 | eqeq2i |  |-  ( ( A ^ 2 ) = ( _i ^ 2 ) <-> ( A ^ 2 ) = -u 1 ) | 
						
							| 8 |  | orcom |  |-  ( ( A = _i \/ A = -u _i ) <-> ( A = -u _i \/ A = _i ) ) | 
						
							| 9 | 5 7 8 | 3bitr3g |  |-  ( A e. CC -> ( ( A ^ 2 ) = -u 1 <-> ( A = -u _i \/ A = _i ) ) ) | 
						
							| 10 | 9 | necon3abid |  |-  ( A e. CC -> ( ( A ^ 2 ) =/= -u 1 <-> -. ( A = -u _i \/ A = _i ) ) ) | 
						
							| 11 |  | neanior |  |-  ( ( A =/= -u _i /\ A =/= _i ) <-> -. ( A = -u _i \/ A = _i ) ) | 
						
							| 12 | 10 11 | bitr4di |  |-  ( A e. CC -> ( ( A ^ 2 ) =/= -u 1 <-> ( A =/= -u _i /\ A =/= _i ) ) ) | 
						
							| 13 | 12 | pm5.32i |  |-  ( ( A e. CC /\ ( A ^ 2 ) =/= -u 1 ) <-> ( A e. CC /\ ( A =/= -u _i /\ A =/= _i ) ) ) | 
						
							| 14 | 1 2 13 | 3bitr4i |  |-  ( A e. dom arctan <-> ( A e. CC /\ ( A ^ 2 ) =/= -u 1 ) ) |