Step |
Hyp |
Ref |
Expression |
1 |
|
3anass |
|- ( ( A e. CC /\ A =/= -u _i /\ A =/= _i ) <-> ( A e. CC /\ ( A =/= -u _i /\ A =/= _i ) ) ) |
2 |
|
atandm |
|- ( A e. dom arctan <-> ( A e. CC /\ A =/= -u _i /\ A =/= _i ) ) |
3 |
|
ax-icn |
|- _i e. CC |
4 |
|
sqeqor |
|- ( ( A e. CC /\ _i e. CC ) -> ( ( A ^ 2 ) = ( _i ^ 2 ) <-> ( A = _i \/ A = -u _i ) ) ) |
5 |
3 4
|
mpan2 |
|- ( A e. CC -> ( ( A ^ 2 ) = ( _i ^ 2 ) <-> ( A = _i \/ A = -u _i ) ) ) |
6 |
|
i2 |
|- ( _i ^ 2 ) = -u 1 |
7 |
6
|
eqeq2i |
|- ( ( A ^ 2 ) = ( _i ^ 2 ) <-> ( A ^ 2 ) = -u 1 ) |
8 |
|
orcom |
|- ( ( A = _i \/ A = -u _i ) <-> ( A = -u _i \/ A = _i ) ) |
9 |
5 7 8
|
3bitr3g |
|- ( A e. CC -> ( ( A ^ 2 ) = -u 1 <-> ( A = -u _i \/ A = _i ) ) ) |
10 |
9
|
necon3abid |
|- ( A e. CC -> ( ( A ^ 2 ) =/= -u 1 <-> -. ( A = -u _i \/ A = _i ) ) ) |
11 |
|
neanior |
|- ( ( A =/= -u _i /\ A =/= _i ) <-> -. ( A = -u _i \/ A = _i ) ) |
12 |
10 11
|
bitr4di |
|- ( A e. CC -> ( ( A ^ 2 ) =/= -u 1 <-> ( A =/= -u _i /\ A =/= _i ) ) ) |
13 |
12
|
pm5.32i |
|- ( ( A e. CC /\ ( A ^ 2 ) =/= -u 1 ) <-> ( A e. CC /\ ( A =/= -u _i /\ A =/= _i ) ) ) |
14 |
1 2 13
|
3bitr4i |
|- ( A e. dom arctan <-> ( A e. CC /\ ( A ^ 2 ) =/= -u 1 ) ) |