| Step | Hyp | Ref | Expression | 
						
							| 1 |  | atandm3 |  |-  ( A e. dom arctan <-> ( A e. CC /\ ( A ^ 2 ) =/= -u 1 ) ) | 
						
							| 2 |  | sqcl |  |-  ( A e. CC -> ( A ^ 2 ) e. CC ) | 
						
							| 3 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 4 |  | subeq0 |  |-  ( ( ( A ^ 2 ) e. CC /\ -u 1 e. CC ) -> ( ( ( A ^ 2 ) - -u 1 ) = 0 <-> ( A ^ 2 ) = -u 1 ) ) | 
						
							| 5 | 2 3 4 | sylancl |  |-  ( A e. CC -> ( ( ( A ^ 2 ) - -u 1 ) = 0 <-> ( A ^ 2 ) = -u 1 ) ) | 
						
							| 6 |  | ax-1cn |  |-  1 e. CC | 
						
							| 7 |  | subneg |  |-  ( ( ( A ^ 2 ) e. CC /\ 1 e. CC ) -> ( ( A ^ 2 ) - -u 1 ) = ( ( A ^ 2 ) + 1 ) ) | 
						
							| 8 | 2 6 7 | sylancl |  |-  ( A e. CC -> ( ( A ^ 2 ) - -u 1 ) = ( ( A ^ 2 ) + 1 ) ) | 
						
							| 9 |  | addcom |  |-  ( ( ( A ^ 2 ) e. CC /\ 1 e. CC ) -> ( ( A ^ 2 ) + 1 ) = ( 1 + ( A ^ 2 ) ) ) | 
						
							| 10 | 2 6 9 | sylancl |  |-  ( A e. CC -> ( ( A ^ 2 ) + 1 ) = ( 1 + ( A ^ 2 ) ) ) | 
						
							| 11 | 8 10 | eqtrd |  |-  ( A e. CC -> ( ( A ^ 2 ) - -u 1 ) = ( 1 + ( A ^ 2 ) ) ) | 
						
							| 12 | 11 | eqeq1d |  |-  ( A e. CC -> ( ( ( A ^ 2 ) - -u 1 ) = 0 <-> ( 1 + ( A ^ 2 ) ) = 0 ) ) | 
						
							| 13 | 5 12 | bitr3d |  |-  ( A e. CC -> ( ( A ^ 2 ) = -u 1 <-> ( 1 + ( A ^ 2 ) ) = 0 ) ) | 
						
							| 14 | 13 | necon3bid |  |-  ( A e. CC -> ( ( A ^ 2 ) =/= -u 1 <-> ( 1 + ( A ^ 2 ) ) =/= 0 ) ) | 
						
							| 15 | 14 | pm5.32i |  |-  ( ( A e. CC /\ ( A ^ 2 ) =/= -u 1 ) <-> ( A e. CC /\ ( 1 + ( A ^ 2 ) ) =/= 0 ) ) | 
						
							| 16 | 1 15 | bitri |  |-  ( A e. dom arctan <-> ( A e. CC /\ ( 1 + ( A ^ 2 ) ) =/= 0 ) ) |