| Step |
Hyp |
Ref |
Expression |
| 1 |
|
atandm3 |
|- ( A e. dom arctan <-> ( A e. CC /\ ( A ^ 2 ) =/= -u 1 ) ) |
| 2 |
1
|
simplbi |
|- ( A e. dom arctan -> A e. CC ) |
| 3 |
2
|
negcld |
|- ( A e. dom arctan -> -u A e. CC ) |
| 4 |
|
sqneg |
|- ( A e. CC -> ( -u A ^ 2 ) = ( A ^ 2 ) ) |
| 5 |
2 4
|
syl |
|- ( A e. dom arctan -> ( -u A ^ 2 ) = ( A ^ 2 ) ) |
| 6 |
1
|
simprbi |
|- ( A e. dom arctan -> ( A ^ 2 ) =/= -u 1 ) |
| 7 |
5 6
|
eqnetrd |
|- ( A e. dom arctan -> ( -u A ^ 2 ) =/= -u 1 ) |
| 8 |
|
atandm3 |
|- ( -u A e. dom arctan <-> ( -u A e. CC /\ ( -u A ^ 2 ) =/= -u 1 ) ) |
| 9 |
3 7 8
|
sylanbrc |
|- ( A e. dom arctan -> -u A e. dom arctan ) |