| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tancl |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( tan ` A ) e. CC ) |
| 2 |
|
tanval |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( tan ` A ) = ( ( sin ` A ) / ( cos ` A ) ) ) |
| 3 |
2
|
oveq1d |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( tan ` A ) ^ 2 ) = ( ( ( sin ` A ) / ( cos ` A ) ) ^ 2 ) ) |
| 4 |
|
sincl |
|- ( A e. CC -> ( sin ` A ) e. CC ) |
| 5 |
4
|
adantr |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( sin ` A ) e. CC ) |
| 6 |
|
coscl |
|- ( A e. CC -> ( cos ` A ) e. CC ) |
| 7 |
6
|
adantr |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( cos ` A ) e. CC ) |
| 8 |
|
simpr |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( cos ` A ) =/= 0 ) |
| 9 |
5 7 8
|
sqdivd |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( ( sin ` A ) / ( cos ` A ) ) ^ 2 ) = ( ( ( sin ` A ) ^ 2 ) / ( ( cos ` A ) ^ 2 ) ) ) |
| 10 |
3 9
|
eqtrd |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( tan ` A ) ^ 2 ) = ( ( ( sin ` A ) ^ 2 ) / ( ( cos ` A ) ^ 2 ) ) ) |
| 11 |
5
|
sqcld |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( sin ` A ) ^ 2 ) e. CC ) |
| 12 |
7
|
sqcld |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( cos ` A ) ^ 2 ) e. CC ) |
| 13 |
12
|
negcld |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> -u ( ( cos ` A ) ^ 2 ) e. CC ) |
| 14 |
11 12
|
subnegd |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( ( sin ` A ) ^ 2 ) - -u ( ( cos ` A ) ^ 2 ) ) = ( ( ( sin ` A ) ^ 2 ) + ( ( cos ` A ) ^ 2 ) ) ) |
| 15 |
|
sincossq |
|- ( A e. CC -> ( ( ( sin ` A ) ^ 2 ) + ( ( cos ` A ) ^ 2 ) ) = 1 ) |
| 16 |
15
|
adantr |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( ( sin ` A ) ^ 2 ) + ( ( cos ` A ) ^ 2 ) ) = 1 ) |
| 17 |
14 16
|
eqtrd |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( ( sin ` A ) ^ 2 ) - -u ( ( cos ` A ) ^ 2 ) ) = 1 ) |
| 18 |
|
ax-1ne0 |
|- 1 =/= 0 |
| 19 |
18
|
a1i |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> 1 =/= 0 ) |
| 20 |
17 19
|
eqnetrd |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( ( sin ` A ) ^ 2 ) - -u ( ( cos ` A ) ^ 2 ) ) =/= 0 ) |
| 21 |
11 13 20
|
subne0ad |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( sin ` A ) ^ 2 ) =/= -u ( ( cos ` A ) ^ 2 ) ) |
| 22 |
12
|
mulm1d |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( -u 1 x. ( ( cos ` A ) ^ 2 ) ) = -u ( ( cos ` A ) ^ 2 ) ) |
| 23 |
21 22
|
neeqtrrd |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( sin ` A ) ^ 2 ) =/= ( -u 1 x. ( ( cos ` A ) ^ 2 ) ) ) |
| 24 |
|
neg1cn |
|- -u 1 e. CC |
| 25 |
24
|
a1i |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> -u 1 e. CC ) |
| 26 |
|
sqne0 |
|- ( ( cos ` A ) e. CC -> ( ( ( cos ` A ) ^ 2 ) =/= 0 <-> ( cos ` A ) =/= 0 ) ) |
| 27 |
6 26
|
syl |
|- ( A e. CC -> ( ( ( cos ` A ) ^ 2 ) =/= 0 <-> ( cos ` A ) =/= 0 ) ) |
| 28 |
27
|
biimpar |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( cos ` A ) ^ 2 ) =/= 0 ) |
| 29 |
11 25 12 28
|
divmul3d |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( ( ( sin ` A ) ^ 2 ) / ( ( cos ` A ) ^ 2 ) ) = -u 1 <-> ( ( sin ` A ) ^ 2 ) = ( -u 1 x. ( ( cos ` A ) ^ 2 ) ) ) ) |
| 30 |
29
|
necon3bid |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( ( ( sin ` A ) ^ 2 ) / ( ( cos ` A ) ^ 2 ) ) =/= -u 1 <-> ( ( sin ` A ) ^ 2 ) =/= ( -u 1 x. ( ( cos ` A ) ^ 2 ) ) ) ) |
| 31 |
23 30
|
mpbird |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( ( sin ` A ) ^ 2 ) / ( ( cos ` A ) ^ 2 ) ) =/= -u 1 ) |
| 32 |
10 31
|
eqnetrd |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( tan ` A ) ^ 2 ) =/= -u 1 ) |
| 33 |
|
atandm3 |
|- ( ( tan ` A ) e. dom arctan <-> ( ( tan ` A ) e. CC /\ ( ( tan ` A ) ^ 2 ) =/= -u 1 ) ) |
| 34 |
1 32 33
|
sylanbrc |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( tan ` A ) e. dom arctan ) |