| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0red |
|- ( A e. dom arctan -> 0 e. RR ) |
| 2 |
|
atandm2 |
|- ( A e. dom arctan <-> ( A e. CC /\ ( 1 - ( _i x. A ) ) =/= 0 /\ ( 1 + ( _i x. A ) ) =/= 0 ) ) |
| 3 |
2
|
simp1bi |
|- ( A e. dom arctan -> A e. CC ) |
| 4 |
3
|
recld |
|- ( A e. dom arctan -> ( Re ` A ) e. RR ) |
| 5 |
|
atanlogaddlem |
|- ( ( A e. dom arctan /\ 0 <_ ( Re ` A ) ) -> ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) e. ran log ) |
| 6 |
|
ax-1cn |
|- 1 e. CC |
| 7 |
|
ax-icn |
|- _i e. CC |
| 8 |
|
mulcl |
|- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
| 9 |
7 3 8
|
sylancr |
|- ( A e. dom arctan -> ( _i x. A ) e. CC ) |
| 10 |
|
addcl |
|- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 + ( _i x. A ) ) e. CC ) |
| 11 |
6 9 10
|
sylancr |
|- ( A e. dom arctan -> ( 1 + ( _i x. A ) ) e. CC ) |
| 12 |
2
|
simp3bi |
|- ( A e. dom arctan -> ( 1 + ( _i x. A ) ) =/= 0 ) |
| 13 |
11 12
|
logcld |
|- ( A e. dom arctan -> ( log ` ( 1 + ( _i x. A ) ) ) e. CC ) |
| 14 |
|
subcl |
|- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 - ( _i x. A ) ) e. CC ) |
| 15 |
6 9 14
|
sylancr |
|- ( A e. dom arctan -> ( 1 - ( _i x. A ) ) e. CC ) |
| 16 |
2
|
simp2bi |
|- ( A e. dom arctan -> ( 1 - ( _i x. A ) ) =/= 0 ) |
| 17 |
15 16
|
logcld |
|- ( A e. dom arctan -> ( log ` ( 1 - ( _i x. A ) ) ) e. CC ) |
| 18 |
13 17
|
addcomd |
|- ( A e. dom arctan -> ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) = ( ( log ` ( 1 - ( _i x. A ) ) ) + ( log ` ( 1 + ( _i x. A ) ) ) ) ) |
| 19 |
|
mulneg2 |
|- ( ( _i e. CC /\ A e. CC ) -> ( _i x. -u A ) = -u ( _i x. A ) ) |
| 20 |
7 3 19
|
sylancr |
|- ( A e. dom arctan -> ( _i x. -u A ) = -u ( _i x. A ) ) |
| 21 |
20
|
oveq2d |
|- ( A e. dom arctan -> ( 1 + ( _i x. -u A ) ) = ( 1 + -u ( _i x. A ) ) ) |
| 22 |
|
negsub |
|- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 + -u ( _i x. A ) ) = ( 1 - ( _i x. A ) ) ) |
| 23 |
6 9 22
|
sylancr |
|- ( A e. dom arctan -> ( 1 + -u ( _i x. A ) ) = ( 1 - ( _i x. A ) ) ) |
| 24 |
21 23
|
eqtrd |
|- ( A e. dom arctan -> ( 1 + ( _i x. -u A ) ) = ( 1 - ( _i x. A ) ) ) |
| 25 |
24
|
fveq2d |
|- ( A e. dom arctan -> ( log ` ( 1 + ( _i x. -u A ) ) ) = ( log ` ( 1 - ( _i x. A ) ) ) ) |
| 26 |
20
|
oveq2d |
|- ( A e. dom arctan -> ( 1 - ( _i x. -u A ) ) = ( 1 - -u ( _i x. A ) ) ) |
| 27 |
|
subneg |
|- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 - -u ( _i x. A ) ) = ( 1 + ( _i x. A ) ) ) |
| 28 |
6 9 27
|
sylancr |
|- ( A e. dom arctan -> ( 1 - -u ( _i x. A ) ) = ( 1 + ( _i x. A ) ) ) |
| 29 |
26 28
|
eqtrd |
|- ( A e. dom arctan -> ( 1 - ( _i x. -u A ) ) = ( 1 + ( _i x. A ) ) ) |
| 30 |
29
|
fveq2d |
|- ( A e. dom arctan -> ( log ` ( 1 - ( _i x. -u A ) ) ) = ( log ` ( 1 + ( _i x. A ) ) ) ) |
| 31 |
25 30
|
oveq12d |
|- ( A e. dom arctan -> ( ( log ` ( 1 + ( _i x. -u A ) ) ) + ( log ` ( 1 - ( _i x. -u A ) ) ) ) = ( ( log ` ( 1 - ( _i x. A ) ) ) + ( log ` ( 1 + ( _i x. A ) ) ) ) ) |
| 32 |
18 31
|
eqtr4d |
|- ( A e. dom arctan -> ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) = ( ( log ` ( 1 + ( _i x. -u A ) ) ) + ( log ` ( 1 - ( _i x. -u A ) ) ) ) ) |
| 33 |
32
|
adantr |
|- ( ( A e. dom arctan /\ ( Re ` A ) <_ 0 ) -> ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) = ( ( log ` ( 1 + ( _i x. -u A ) ) ) + ( log ` ( 1 - ( _i x. -u A ) ) ) ) ) |
| 34 |
|
atandmneg |
|- ( A e. dom arctan -> -u A e. dom arctan ) |
| 35 |
4
|
le0neg1d |
|- ( A e. dom arctan -> ( ( Re ` A ) <_ 0 <-> 0 <_ -u ( Re ` A ) ) ) |
| 36 |
35
|
biimpa |
|- ( ( A e. dom arctan /\ ( Re ` A ) <_ 0 ) -> 0 <_ -u ( Re ` A ) ) |
| 37 |
3
|
renegd |
|- ( A e. dom arctan -> ( Re ` -u A ) = -u ( Re ` A ) ) |
| 38 |
37
|
adantr |
|- ( ( A e. dom arctan /\ ( Re ` A ) <_ 0 ) -> ( Re ` -u A ) = -u ( Re ` A ) ) |
| 39 |
36 38
|
breqtrrd |
|- ( ( A e. dom arctan /\ ( Re ` A ) <_ 0 ) -> 0 <_ ( Re ` -u A ) ) |
| 40 |
|
atanlogaddlem |
|- ( ( -u A e. dom arctan /\ 0 <_ ( Re ` -u A ) ) -> ( ( log ` ( 1 + ( _i x. -u A ) ) ) + ( log ` ( 1 - ( _i x. -u A ) ) ) ) e. ran log ) |
| 41 |
34 39 40
|
syl2an2r |
|- ( ( A e. dom arctan /\ ( Re ` A ) <_ 0 ) -> ( ( log ` ( 1 + ( _i x. -u A ) ) ) + ( log ` ( 1 - ( _i x. -u A ) ) ) ) e. ran log ) |
| 42 |
33 41
|
eqeltrd |
|- ( ( A e. dom arctan /\ ( Re ` A ) <_ 0 ) -> ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) e. ran log ) |
| 43 |
1 4 5 42
|
lecasei |
|- ( A e. dom arctan -> ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) e. ran log ) |