Step |
Hyp |
Ref |
Expression |
1 |
|
0red |
|- ( A e. dom arctan -> 0 e. RR ) |
2 |
|
atandm2 |
|- ( A e. dom arctan <-> ( A e. CC /\ ( 1 - ( _i x. A ) ) =/= 0 /\ ( 1 + ( _i x. A ) ) =/= 0 ) ) |
3 |
2
|
simp1bi |
|- ( A e. dom arctan -> A e. CC ) |
4 |
3
|
recld |
|- ( A e. dom arctan -> ( Re ` A ) e. RR ) |
5 |
|
atanlogaddlem |
|- ( ( A e. dom arctan /\ 0 <_ ( Re ` A ) ) -> ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) e. ran log ) |
6 |
|
ax-1cn |
|- 1 e. CC |
7 |
|
ax-icn |
|- _i e. CC |
8 |
|
mulcl |
|- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
9 |
7 3 8
|
sylancr |
|- ( A e. dom arctan -> ( _i x. A ) e. CC ) |
10 |
|
addcl |
|- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 + ( _i x. A ) ) e. CC ) |
11 |
6 9 10
|
sylancr |
|- ( A e. dom arctan -> ( 1 + ( _i x. A ) ) e. CC ) |
12 |
2
|
simp3bi |
|- ( A e. dom arctan -> ( 1 + ( _i x. A ) ) =/= 0 ) |
13 |
11 12
|
logcld |
|- ( A e. dom arctan -> ( log ` ( 1 + ( _i x. A ) ) ) e. CC ) |
14 |
|
subcl |
|- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 - ( _i x. A ) ) e. CC ) |
15 |
6 9 14
|
sylancr |
|- ( A e. dom arctan -> ( 1 - ( _i x. A ) ) e. CC ) |
16 |
2
|
simp2bi |
|- ( A e. dom arctan -> ( 1 - ( _i x. A ) ) =/= 0 ) |
17 |
15 16
|
logcld |
|- ( A e. dom arctan -> ( log ` ( 1 - ( _i x. A ) ) ) e. CC ) |
18 |
13 17
|
addcomd |
|- ( A e. dom arctan -> ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) = ( ( log ` ( 1 - ( _i x. A ) ) ) + ( log ` ( 1 + ( _i x. A ) ) ) ) ) |
19 |
|
mulneg2 |
|- ( ( _i e. CC /\ A e. CC ) -> ( _i x. -u A ) = -u ( _i x. A ) ) |
20 |
7 3 19
|
sylancr |
|- ( A e. dom arctan -> ( _i x. -u A ) = -u ( _i x. A ) ) |
21 |
20
|
oveq2d |
|- ( A e. dom arctan -> ( 1 + ( _i x. -u A ) ) = ( 1 + -u ( _i x. A ) ) ) |
22 |
|
negsub |
|- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 + -u ( _i x. A ) ) = ( 1 - ( _i x. A ) ) ) |
23 |
6 9 22
|
sylancr |
|- ( A e. dom arctan -> ( 1 + -u ( _i x. A ) ) = ( 1 - ( _i x. A ) ) ) |
24 |
21 23
|
eqtrd |
|- ( A e. dom arctan -> ( 1 + ( _i x. -u A ) ) = ( 1 - ( _i x. A ) ) ) |
25 |
24
|
fveq2d |
|- ( A e. dom arctan -> ( log ` ( 1 + ( _i x. -u A ) ) ) = ( log ` ( 1 - ( _i x. A ) ) ) ) |
26 |
20
|
oveq2d |
|- ( A e. dom arctan -> ( 1 - ( _i x. -u A ) ) = ( 1 - -u ( _i x. A ) ) ) |
27 |
|
subneg |
|- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 - -u ( _i x. A ) ) = ( 1 + ( _i x. A ) ) ) |
28 |
6 9 27
|
sylancr |
|- ( A e. dom arctan -> ( 1 - -u ( _i x. A ) ) = ( 1 + ( _i x. A ) ) ) |
29 |
26 28
|
eqtrd |
|- ( A e. dom arctan -> ( 1 - ( _i x. -u A ) ) = ( 1 + ( _i x. A ) ) ) |
30 |
29
|
fveq2d |
|- ( A e. dom arctan -> ( log ` ( 1 - ( _i x. -u A ) ) ) = ( log ` ( 1 + ( _i x. A ) ) ) ) |
31 |
25 30
|
oveq12d |
|- ( A e. dom arctan -> ( ( log ` ( 1 + ( _i x. -u A ) ) ) + ( log ` ( 1 - ( _i x. -u A ) ) ) ) = ( ( log ` ( 1 - ( _i x. A ) ) ) + ( log ` ( 1 + ( _i x. A ) ) ) ) ) |
32 |
18 31
|
eqtr4d |
|- ( A e. dom arctan -> ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) = ( ( log ` ( 1 + ( _i x. -u A ) ) ) + ( log ` ( 1 - ( _i x. -u A ) ) ) ) ) |
33 |
32
|
adantr |
|- ( ( A e. dom arctan /\ ( Re ` A ) <_ 0 ) -> ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) = ( ( log ` ( 1 + ( _i x. -u A ) ) ) + ( log ` ( 1 - ( _i x. -u A ) ) ) ) ) |
34 |
|
atandmneg |
|- ( A e. dom arctan -> -u A e. dom arctan ) |
35 |
4
|
le0neg1d |
|- ( A e. dom arctan -> ( ( Re ` A ) <_ 0 <-> 0 <_ -u ( Re ` A ) ) ) |
36 |
35
|
biimpa |
|- ( ( A e. dom arctan /\ ( Re ` A ) <_ 0 ) -> 0 <_ -u ( Re ` A ) ) |
37 |
3
|
renegd |
|- ( A e. dom arctan -> ( Re ` -u A ) = -u ( Re ` A ) ) |
38 |
37
|
adantr |
|- ( ( A e. dom arctan /\ ( Re ` A ) <_ 0 ) -> ( Re ` -u A ) = -u ( Re ` A ) ) |
39 |
36 38
|
breqtrrd |
|- ( ( A e. dom arctan /\ ( Re ` A ) <_ 0 ) -> 0 <_ ( Re ` -u A ) ) |
40 |
|
atanlogaddlem |
|- ( ( -u A e. dom arctan /\ 0 <_ ( Re ` -u A ) ) -> ( ( log ` ( 1 + ( _i x. -u A ) ) ) + ( log ` ( 1 - ( _i x. -u A ) ) ) ) e. ran log ) |
41 |
34 39 40
|
syl2an2r |
|- ( ( A e. dom arctan /\ ( Re ` A ) <_ 0 ) -> ( ( log ` ( 1 + ( _i x. -u A ) ) ) + ( log ` ( 1 - ( _i x. -u A ) ) ) ) e. ran log ) |
42 |
33 41
|
eqeltrd |
|- ( ( A e. dom arctan /\ ( Re ` A ) <_ 0 ) -> ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) e. ran log ) |
43 |
1 4 5 42
|
lecasei |
|- ( A e. dom arctan -> ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) e. ran log ) |