| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-1cn |
|- 1 e. CC |
| 2 |
|
ax-icn |
|- _i e. CC |
| 3 |
|
atandm2 |
|- ( A e. dom arctan <-> ( A e. CC /\ ( 1 - ( _i x. A ) ) =/= 0 /\ ( 1 + ( _i x. A ) ) =/= 0 ) ) |
| 4 |
3
|
simp1bi |
|- ( A e. dom arctan -> A e. CC ) |
| 5 |
|
mulcl |
|- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
| 6 |
2 4 5
|
sylancr |
|- ( A e. dom arctan -> ( _i x. A ) e. CC ) |
| 7 |
|
addcl |
|- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 + ( _i x. A ) ) e. CC ) |
| 8 |
1 6 7
|
sylancr |
|- ( A e. dom arctan -> ( 1 + ( _i x. A ) ) e. CC ) |
| 9 |
3
|
simp3bi |
|- ( A e. dom arctan -> ( 1 + ( _i x. A ) ) =/= 0 ) |
| 10 |
8 9
|
logcld |
|- ( A e. dom arctan -> ( log ` ( 1 + ( _i x. A ) ) ) e. CC ) |
| 11 |
|
subcl |
|- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 - ( _i x. A ) ) e. CC ) |
| 12 |
1 6 11
|
sylancr |
|- ( A e. dom arctan -> ( 1 - ( _i x. A ) ) e. CC ) |
| 13 |
3
|
simp2bi |
|- ( A e. dom arctan -> ( 1 - ( _i x. A ) ) =/= 0 ) |
| 14 |
12 13
|
logcld |
|- ( A e. dom arctan -> ( log ` ( 1 - ( _i x. A ) ) ) e. CC ) |
| 15 |
10 14
|
subcld |
|- ( A e. dom arctan -> ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) e. CC ) |
| 16 |
15
|
adantr |
|- ( ( A e. dom arctan /\ ( Re ` A ) =/= 0 ) -> ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) e. CC ) |
| 17 |
4
|
recld |
|- ( A e. dom arctan -> ( Re ` A ) e. RR ) |
| 18 |
|
0re |
|- 0 e. RR |
| 19 |
|
lttri2 |
|- ( ( ( Re ` A ) e. RR /\ 0 e. RR ) -> ( ( Re ` A ) =/= 0 <-> ( ( Re ` A ) < 0 \/ 0 < ( Re ` A ) ) ) ) |
| 20 |
17 18 19
|
sylancl |
|- ( A e. dom arctan -> ( ( Re ` A ) =/= 0 <-> ( ( Re ` A ) < 0 \/ 0 < ( Re ` A ) ) ) ) |
| 21 |
20
|
biimpa |
|- ( ( A e. dom arctan /\ ( Re ` A ) =/= 0 ) -> ( ( Re ` A ) < 0 \/ 0 < ( Re ` A ) ) ) |
| 22 |
15
|
imnegd |
|- ( A e. dom arctan -> ( Im ` -u ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) = -u ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) |
| 23 |
10 14
|
negsubdi2d |
|- ( A e. dom arctan -> -u ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) = ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) |
| 24 |
|
mulneg2 |
|- ( ( _i e. CC /\ A e. CC ) -> ( _i x. -u A ) = -u ( _i x. A ) ) |
| 25 |
2 4 24
|
sylancr |
|- ( A e. dom arctan -> ( _i x. -u A ) = -u ( _i x. A ) ) |
| 26 |
25
|
oveq2d |
|- ( A e. dom arctan -> ( 1 + ( _i x. -u A ) ) = ( 1 + -u ( _i x. A ) ) ) |
| 27 |
|
negsub |
|- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 + -u ( _i x. A ) ) = ( 1 - ( _i x. A ) ) ) |
| 28 |
1 6 27
|
sylancr |
|- ( A e. dom arctan -> ( 1 + -u ( _i x. A ) ) = ( 1 - ( _i x. A ) ) ) |
| 29 |
26 28
|
eqtrd |
|- ( A e. dom arctan -> ( 1 + ( _i x. -u A ) ) = ( 1 - ( _i x. A ) ) ) |
| 30 |
29
|
fveq2d |
|- ( A e. dom arctan -> ( log ` ( 1 + ( _i x. -u A ) ) ) = ( log ` ( 1 - ( _i x. A ) ) ) ) |
| 31 |
25
|
oveq2d |
|- ( A e. dom arctan -> ( 1 - ( _i x. -u A ) ) = ( 1 - -u ( _i x. A ) ) ) |
| 32 |
|
subneg |
|- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 - -u ( _i x. A ) ) = ( 1 + ( _i x. A ) ) ) |
| 33 |
1 6 32
|
sylancr |
|- ( A e. dom arctan -> ( 1 - -u ( _i x. A ) ) = ( 1 + ( _i x. A ) ) ) |
| 34 |
31 33
|
eqtrd |
|- ( A e. dom arctan -> ( 1 - ( _i x. -u A ) ) = ( 1 + ( _i x. A ) ) ) |
| 35 |
34
|
fveq2d |
|- ( A e. dom arctan -> ( log ` ( 1 - ( _i x. -u A ) ) ) = ( log ` ( 1 + ( _i x. A ) ) ) ) |
| 36 |
30 35
|
oveq12d |
|- ( A e. dom arctan -> ( ( log ` ( 1 + ( _i x. -u A ) ) ) - ( log ` ( 1 - ( _i x. -u A ) ) ) ) = ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) |
| 37 |
23 36
|
eqtr4d |
|- ( A e. dom arctan -> -u ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) = ( ( log ` ( 1 + ( _i x. -u A ) ) ) - ( log ` ( 1 - ( _i x. -u A ) ) ) ) ) |
| 38 |
37
|
fveq2d |
|- ( A e. dom arctan -> ( Im ` -u ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) = ( Im ` ( ( log ` ( 1 + ( _i x. -u A ) ) ) - ( log ` ( 1 - ( _i x. -u A ) ) ) ) ) ) |
| 39 |
22 38
|
eqtr3d |
|- ( A e. dom arctan -> -u ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) = ( Im ` ( ( log ` ( 1 + ( _i x. -u A ) ) ) - ( log ` ( 1 - ( _i x. -u A ) ) ) ) ) ) |
| 40 |
39
|
adantr |
|- ( ( A e. dom arctan /\ ( Re ` A ) < 0 ) -> -u ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) = ( Im ` ( ( log ` ( 1 + ( _i x. -u A ) ) ) - ( log ` ( 1 - ( _i x. -u A ) ) ) ) ) ) |
| 41 |
|
atandmneg |
|- ( A e. dom arctan -> -u A e. dom arctan ) |
| 42 |
17
|
lt0neg1d |
|- ( A e. dom arctan -> ( ( Re ` A ) < 0 <-> 0 < -u ( Re ` A ) ) ) |
| 43 |
42
|
biimpa |
|- ( ( A e. dom arctan /\ ( Re ` A ) < 0 ) -> 0 < -u ( Re ` A ) ) |
| 44 |
4
|
adantr |
|- ( ( A e. dom arctan /\ ( Re ` A ) < 0 ) -> A e. CC ) |
| 45 |
44
|
renegd |
|- ( ( A e. dom arctan /\ ( Re ` A ) < 0 ) -> ( Re ` -u A ) = -u ( Re ` A ) ) |
| 46 |
43 45
|
breqtrrd |
|- ( ( A e. dom arctan /\ ( Re ` A ) < 0 ) -> 0 < ( Re ` -u A ) ) |
| 47 |
|
atanlogsublem |
|- ( ( -u A e. dom arctan /\ 0 < ( Re ` -u A ) ) -> ( Im ` ( ( log ` ( 1 + ( _i x. -u A ) ) ) - ( log ` ( 1 - ( _i x. -u A ) ) ) ) ) e. ( -u _pi (,) _pi ) ) |
| 48 |
41 46 47
|
syl2an2r |
|- ( ( A e. dom arctan /\ ( Re ` A ) < 0 ) -> ( Im ` ( ( log ` ( 1 + ( _i x. -u A ) ) ) - ( log ` ( 1 - ( _i x. -u A ) ) ) ) ) e. ( -u _pi (,) _pi ) ) |
| 49 |
|
picn |
|- _pi e. CC |
| 50 |
49
|
negnegi |
|- -u -u _pi = _pi |
| 51 |
50
|
oveq2i |
|- ( -u _pi (,) -u -u _pi ) = ( -u _pi (,) _pi ) |
| 52 |
48 51
|
eleqtrrdi |
|- ( ( A e. dom arctan /\ ( Re ` A ) < 0 ) -> ( Im ` ( ( log ` ( 1 + ( _i x. -u A ) ) ) - ( log ` ( 1 - ( _i x. -u A ) ) ) ) ) e. ( -u _pi (,) -u -u _pi ) ) |
| 53 |
40 52
|
eqeltrd |
|- ( ( A e. dom arctan /\ ( Re ` A ) < 0 ) -> -u ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) e. ( -u _pi (,) -u -u _pi ) ) |
| 54 |
|
pire |
|- _pi e. RR |
| 55 |
54
|
renegcli |
|- -u _pi e. RR |
| 56 |
15
|
adantr |
|- ( ( A e. dom arctan /\ ( Re ` A ) < 0 ) -> ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) e. CC ) |
| 57 |
56
|
imcld |
|- ( ( A e. dom arctan /\ ( Re ` A ) < 0 ) -> ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) e. RR ) |
| 58 |
|
iooneg |
|- ( ( -u _pi e. RR /\ _pi e. RR /\ ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) e. RR ) -> ( ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) e. ( -u _pi (,) _pi ) <-> -u ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) e. ( -u _pi (,) -u -u _pi ) ) ) |
| 59 |
55 54 57 58
|
mp3an12i |
|- ( ( A e. dom arctan /\ ( Re ` A ) < 0 ) -> ( ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) e. ( -u _pi (,) _pi ) <-> -u ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) e. ( -u _pi (,) -u -u _pi ) ) ) |
| 60 |
53 59
|
mpbird |
|- ( ( A e. dom arctan /\ ( Re ` A ) < 0 ) -> ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) e. ( -u _pi (,) _pi ) ) |
| 61 |
|
atanlogsublem |
|- ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) e. ( -u _pi (,) _pi ) ) |
| 62 |
60 61
|
jaodan |
|- ( ( A e. dom arctan /\ ( ( Re ` A ) < 0 \/ 0 < ( Re ` A ) ) ) -> ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) e. ( -u _pi (,) _pi ) ) |
| 63 |
21 62
|
syldan |
|- ( ( A e. dom arctan /\ ( Re ` A ) =/= 0 ) -> ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) e. ( -u _pi (,) _pi ) ) |
| 64 |
|
eliooord |
|- ( ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) e. ( -u _pi (,) _pi ) -> ( -u _pi < ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) /\ ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) < _pi ) ) |
| 65 |
63 64
|
syl |
|- ( ( A e. dom arctan /\ ( Re ` A ) =/= 0 ) -> ( -u _pi < ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) /\ ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) < _pi ) ) |
| 66 |
65
|
simpld |
|- ( ( A e. dom arctan /\ ( Re ` A ) =/= 0 ) -> -u _pi < ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) |
| 67 |
65
|
simprd |
|- ( ( A e. dom arctan /\ ( Re ` A ) =/= 0 ) -> ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) < _pi ) |
| 68 |
16
|
imcld |
|- ( ( A e. dom arctan /\ ( Re ` A ) =/= 0 ) -> ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) e. RR ) |
| 69 |
|
ltle |
|- ( ( ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) e. RR /\ _pi e. RR ) -> ( ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) < _pi -> ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) <_ _pi ) ) |
| 70 |
68 54 69
|
sylancl |
|- ( ( A e. dom arctan /\ ( Re ` A ) =/= 0 ) -> ( ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) < _pi -> ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) <_ _pi ) ) |
| 71 |
67 70
|
mpd |
|- ( ( A e. dom arctan /\ ( Re ` A ) =/= 0 ) -> ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) <_ _pi ) |
| 72 |
|
ellogrn |
|- ( ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) e. ran log <-> ( ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) e. CC /\ -u _pi < ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) /\ ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) <_ _pi ) ) |
| 73 |
16 66 71 72
|
syl3anbrc |
|- ( ( A e. dom arctan /\ ( Re ` A ) =/= 0 ) -> ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) e. ran log ) |