| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							atanbnd | 
							 |-  ( A e. RR -> ( arctan ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							atanbnd | 
							 |-  ( B e. RR -> ( arctan ` B ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							tanord | 
							 |-  ( ( ( arctan ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ ( arctan ` B ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( arctan ` A ) < ( arctan ` B ) <-> ( tan ` ( arctan ` A ) ) < ( tan ` ( arctan ` B ) ) ) )  | 
						
						
							| 4 | 
							
								1 2 3
							 | 
							syl2an | 
							 |-  ( ( A e. RR /\ B e. RR ) -> ( ( arctan ` A ) < ( arctan ` B ) <-> ( tan ` ( arctan ` A ) ) < ( tan ` ( arctan ` B ) ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							atanre | 
							 |-  ( A e. RR -> A e. dom arctan )  | 
						
						
							| 6 | 
							
								
							 | 
							tanatan | 
							 |-  ( A e. dom arctan -> ( tan ` ( arctan ` A ) ) = A )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							syl | 
							 |-  ( A e. RR -> ( tan ` ( arctan ` A ) ) = A )  | 
						
						
							| 8 | 
							
								
							 | 
							atanre | 
							 |-  ( B e. RR -> B e. dom arctan )  | 
						
						
							| 9 | 
							
								
							 | 
							tanatan | 
							 |-  ( B e. dom arctan -> ( tan ` ( arctan ` B ) ) = B )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							syl | 
							 |-  ( B e. RR -> ( tan ` ( arctan ` B ) ) = B )  | 
						
						
							| 11 | 
							
								7 10
							 | 
							breqan12d | 
							 |-  ( ( A e. RR /\ B e. RR ) -> ( ( tan ` ( arctan ` A ) ) < ( tan ` ( arctan ` B ) ) <-> A < B ) )  | 
						
						
							| 12 | 
							
								4 11
							 | 
							bitr2d | 
							 |-  ( ( A e. RR /\ B e. RR ) -> ( A < B <-> ( arctan ` A ) < ( arctan ` B ) ) )  |