| Step | Hyp | Ref | Expression | 
						
							| 1 |  | recn |  |-  ( A e. RR -> A e. CC ) | 
						
							| 2 |  | neg1rr |  |-  -u 1 e. RR | 
						
							| 3 | 2 | a1i |  |-  ( A e. RR -> -u 1 e. RR ) | 
						
							| 4 |  | 0red |  |-  ( A e. RR -> 0 e. RR ) | 
						
							| 5 |  | resqcl |  |-  ( A e. RR -> ( A ^ 2 ) e. RR ) | 
						
							| 6 |  | neg1lt0 |  |-  -u 1 < 0 | 
						
							| 7 | 6 | a1i |  |-  ( A e. RR -> -u 1 < 0 ) | 
						
							| 8 |  | sqge0 |  |-  ( A e. RR -> 0 <_ ( A ^ 2 ) ) | 
						
							| 9 | 3 4 5 7 8 | ltletrd |  |-  ( A e. RR -> -u 1 < ( A ^ 2 ) ) | 
						
							| 10 | 3 9 | gtned |  |-  ( A e. RR -> ( A ^ 2 ) =/= -u 1 ) | 
						
							| 11 |  | atandm3 |  |-  ( A e. dom arctan <-> ( A e. CC /\ ( A ^ 2 ) =/= -u 1 ) ) | 
						
							| 12 | 1 10 11 | sylanbrc |  |-  ( A e. RR -> A e. dom arctan ) |