Step |
Hyp |
Ref |
Expression |
1 |
|
atansopn.d |
|- D = ( CC \ ( -oo (,] 0 ) ) |
2 |
|
atansopn.s |
|- S = { y e. CC | ( 1 + ( y ^ 2 ) ) e. D } |
3 |
|
eqid |
|- ( y e. CC |-> ( 1 + ( y ^ 2 ) ) ) = ( y e. CC |-> ( 1 + ( y ^ 2 ) ) ) |
4 |
3
|
mptpreima |
|- ( `' ( y e. CC |-> ( 1 + ( y ^ 2 ) ) ) " D ) = { y e. CC | ( 1 + ( y ^ 2 ) ) e. D } |
5 |
2 4
|
eqtr4i |
|- S = ( `' ( y e. CC |-> ( 1 + ( y ^ 2 ) ) ) " D ) |
6 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
7 |
6
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
8 |
7
|
a1i |
|- ( T. -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) |
9 |
|
1cnd |
|- ( T. -> 1 e. CC ) |
10 |
8 8 9
|
cnmptc |
|- ( T. -> ( y e. CC |-> 1 ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
11 |
|
2nn0 |
|- 2 e. NN0 |
12 |
6
|
expcn |
|- ( 2 e. NN0 -> ( y e. CC |-> ( y ^ 2 ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
13 |
11 12
|
mp1i |
|- ( T. -> ( y e. CC |-> ( y ^ 2 ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
14 |
6
|
addcn |
|- + e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
15 |
14
|
a1i |
|- ( T. -> + e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) |
16 |
8 10 13 15
|
cnmpt12f |
|- ( T. -> ( y e. CC |-> ( 1 + ( y ^ 2 ) ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
17 |
16
|
mptru |
|- ( y e. CC |-> ( 1 + ( y ^ 2 ) ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) |
18 |
1
|
logdmopn |
|- D e. ( TopOpen ` CCfld ) |
19 |
|
cnima |
|- ( ( ( y e. CC |-> ( 1 + ( y ^ 2 ) ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) /\ D e. ( TopOpen ` CCfld ) ) -> ( `' ( y e. CC |-> ( 1 + ( y ^ 2 ) ) ) " D ) e. ( TopOpen ` CCfld ) ) |
20 |
17 18 19
|
mp2an |
|- ( `' ( y e. CC |-> ( 1 + ( y ^ 2 ) ) ) " D ) e. ( TopOpen ` CCfld ) |
21 |
5 20
|
eqeltri |
|- S e. ( TopOpen ` CCfld ) |