| Step | Hyp | Ref | Expression | 
						
							| 1 |  | atansopn.d |  |-  D = ( CC \ ( -oo (,] 0 ) ) | 
						
							| 2 |  | atansopn.s |  |-  S = { y e. CC | ( 1 + ( y ^ 2 ) ) e. D } | 
						
							| 3 |  | eqid |  |-  ( y e. CC |-> ( 1 + ( y ^ 2 ) ) ) = ( y e. CC |-> ( 1 + ( y ^ 2 ) ) ) | 
						
							| 4 | 3 | mptpreima |  |-  ( `' ( y e. CC |-> ( 1 + ( y ^ 2 ) ) ) " D ) = { y e. CC | ( 1 + ( y ^ 2 ) ) e. D } | 
						
							| 5 | 2 4 | eqtr4i |  |-  S = ( `' ( y e. CC |-> ( 1 + ( y ^ 2 ) ) ) " D ) | 
						
							| 6 |  | eqid |  |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) | 
						
							| 7 | 6 | cnfldtopon |  |-  ( TopOpen ` CCfld ) e. ( TopOn ` CC ) | 
						
							| 8 | 7 | a1i |  |-  ( T. -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) | 
						
							| 9 |  | 1cnd |  |-  ( T. -> 1 e. CC ) | 
						
							| 10 | 8 8 9 | cnmptc |  |-  ( T. -> ( y e. CC |-> 1 ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 11 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 12 | 6 | expcn |  |-  ( 2 e. NN0 -> ( y e. CC |-> ( y ^ 2 ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 13 | 11 12 | mp1i |  |-  ( T. -> ( y e. CC |-> ( y ^ 2 ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 14 | 6 | addcn |  |-  + e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) | 
						
							| 15 | 14 | a1i |  |-  ( T. -> + e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 16 | 8 10 13 15 | cnmpt12f |  |-  ( T. -> ( y e. CC |-> ( 1 + ( y ^ 2 ) ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 17 | 16 | mptru |  |-  ( y e. CC |-> ( 1 + ( y ^ 2 ) ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) | 
						
							| 18 | 1 | logdmopn |  |-  D e. ( TopOpen ` CCfld ) | 
						
							| 19 |  | cnima |  |-  ( ( ( y e. CC |-> ( 1 + ( y ^ 2 ) ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) /\ D e. ( TopOpen ` CCfld ) ) -> ( `' ( y e. CC |-> ( 1 + ( y ^ 2 ) ) ) " D ) e. ( TopOpen ` CCfld ) ) | 
						
							| 20 | 17 18 19 | mp2an |  |-  ( `' ( y e. CC |-> ( 1 + ( y ^ 2 ) ) ) " D ) e. ( TopOpen ` CCfld ) | 
						
							| 21 | 5 20 | eqeltri |  |-  S e. ( TopOpen ` CCfld ) |