| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cosne0 |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( cos ` A ) =/= 0 ) |
| 2 |
|
atandmtan |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( tan ` A ) e. dom arctan ) |
| 3 |
1 2
|
syldan |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( tan ` A ) e. dom arctan ) |
| 4 |
|
atanval |
|- ( ( tan ` A ) e. dom arctan -> ( arctan ` ( tan ` A ) ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) - ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) ) ) ) |
| 5 |
3 4
|
syl |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( arctan ` ( tan ` A ) ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) - ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) ) ) ) |
| 6 |
|
ax-1cn |
|- 1 e. CC |
| 7 |
|
ax-icn |
|- _i e. CC |
| 8 |
|
tancl |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( tan ` A ) e. CC ) |
| 9 |
1 8
|
syldan |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( tan ` A ) e. CC ) |
| 10 |
|
mulcl |
|- ( ( _i e. CC /\ ( tan ` A ) e. CC ) -> ( _i x. ( tan ` A ) ) e. CC ) |
| 11 |
7 9 10
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( _i x. ( tan ` A ) ) e. CC ) |
| 12 |
|
addcl |
|- ( ( 1 e. CC /\ ( _i x. ( tan ` A ) ) e. CC ) -> ( 1 + ( _i x. ( tan ` A ) ) ) e. CC ) |
| 13 |
6 11 12
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( 1 + ( _i x. ( tan ` A ) ) ) e. CC ) |
| 14 |
|
atandm2 |
|- ( ( tan ` A ) e. dom arctan <-> ( ( tan ` A ) e. CC /\ ( 1 - ( _i x. ( tan ` A ) ) ) =/= 0 /\ ( 1 + ( _i x. ( tan ` A ) ) ) =/= 0 ) ) |
| 15 |
3 14
|
sylib |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( tan ` A ) e. CC /\ ( 1 - ( _i x. ( tan ` A ) ) ) =/= 0 /\ ( 1 + ( _i x. ( tan ` A ) ) ) =/= 0 ) ) |
| 16 |
15
|
simp3d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( 1 + ( _i x. ( tan ` A ) ) ) =/= 0 ) |
| 17 |
13 16
|
logcld |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) e. CC ) |
| 18 |
|
subcl |
|- ( ( 1 e. CC /\ ( _i x. ( tan ` A ) ) e. CC ) -> ( 1 - ( _i x. ( tan ` A ) ) ) e. CC ) |
| 19 |
6 11 18
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( 1 - ( _i x. ( tan ` A ) ) ) e. CC ) |
| 20 |
15
|
simp2d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( 1 - ( _i x. ( tan ` A ) ) ) =/= 0 ) |
| 21 |
19 20
|
logcld |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) e. CC ) |
| 22 |
17 21
|
negsubdi2d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> -u ( ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) - ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) ) = ( ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) - ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) ) ) |
| 23 |
|
efsub |
|- ( ( ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) e. CC /\ ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) e. CC ) -> ( exp ` ( ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) - ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) ) ) = ( ( exp ` ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) ) / ( exp ` ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) ) ) ) |
| 24 |
17 21 23
|
syl2anc |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( exp ` ( ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) - ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) ) ) = ( ( exp ` ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) ) / ( exp ` ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) ) ) ) |
| 25 |
|
coscl |
|- ( A e. CC -> ( cos ` A ) e. CC ) |
| 26 |
25
|
adantr |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( cos ` A ) e. CC ) |
| 27 |
|
sincl |
|- ( A e. CC -> ( sin ` A ) e. CC ) |
| 28 |
27
|
adantr |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( sin ` A ) e. CC ) |
| 29 |
|
mulcl |
|- ( ( _i e. CC /\ ( sin ` A ) e. CC ) -> ( _i x. ( sin ` A ) ) e. CC ) |
| 30 |
7 28 29
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( _i x. ( sin ` A ) ) e. CC ) |
| 31 |
26 30 26 1
|
divdird |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) / ( cos ` A ) ) = ( ( ( cos ` A ) / ( cos ` A ) ) + ( ( _i x. ( sin ` A ) ) / ( cos ` A ) ) ) ) |
| 32 |
26 1
|
dividd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( cos ` A ) / ( cos ` A ) ) = 1 ) |
| 33 |
7
|
a1i |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> _i e. CC ) |
| 34 |
33 28 26 1
|
divassd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( _i x. ( sin ` A ) ) / ( cos ` A ) ) = ( _i x. ( ( sin ` A ) / ( cos ` A ) ) ) ) |
| 35 |
|
tanval |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( tan ` A ) = ( ( sin ` A ) / ( cos ` A ) ) ) |
| 36 |
1 35
|
syldan |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( tan ` A ) = ( ( sin ` A ) / ( cos ` A ) ) ) |
| 37 |
36
|
oveq2d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( _i x. ( tan ` A ) ) = ( _i x. ( ( sin ` A ) / ( cos ` A ) ) ) ) |
| 38 |
34 37
|
eqtr4d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( _i x. ( sin ` A ) ) / ( cos ` A ) ) = ( _i x. ( tan ` A ) ) ) |
| 39 |
32 38
|
oveq12d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( ( cos ` A ) / ( cos ` A ) ) + ( ( _i x. ( sin ` A ) ) / ( cos ` A ) ) ) = ( 1 + ( _i x. ( tan ` A ) ) ) ) |
| 40 |
31 39
|
eqtrd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) / ( cos ` A ) ) = ( 1 + ( _i x. ( tan ` A ) ) ) ) |
| 41 |
|
efival |
|- ( A e. CC -> ( exp ` ( _i x. A ) ) = ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ) |
| 42 |
41
|
adantr |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( exp ` ( _i x. A ) ) = ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ) |
| 43 |
42
|
oveq1d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( exp ` ( _i x. A ) ) / ( cos ` A ) ) = ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) / ( cos ` A ) ) ) |
| 44 |
|
eflog |
|- ( ( ( 1 + ( _i x. ( tan ` A ) ) ) e. CC /\ ( 1 + ( _i x. ( tan ` A ) ) ) =/= 0 ) -> ( exp ` ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) ) = ( 1 + ( _i x. ( tan ` A ) ) ) ) |
| 45 |
13 16 44
|
syl2anc |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( exp ` ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) ) = ( 1 + ( _i x. ( tan ` A ) ) ) ) |
| 46 |
40 43 45
|
3eqtr4d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( exp ` ( _i x. A ) ) / ( cos ` A ) ) = ( exp ` ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) ) ) |
| 47 |
26 30 26 1
|
divsubdird |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( ( cos ` A ) - ( _i x. ( sin ` A ) ) ) / ( cos ` A ) ) = ( ( ( cos ` A ) / ( cos ` A ) ) - ( ( _i x. ( sin ` A ) ) / ( cos ` A ) ) ) ) |
| 48 |
32 38
|
oveq12d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( ( cos ` A ) / ( cos ` A ) ) - ( ( _i x. ( sin ` A ) ) / ( cos ` A ) ) ) = ( 1 - ( _i x. ( tan ` A ) ) ) ) |
| 49 |
47 48
|
eqtrd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( ( cos ` A ) - ( _i x. ( sin ` A ) ) ) / ( cos ` A ) ) = ( 1 - ( _i x. ( tan ` A ) ) ) ) |
| 50 |
|
negcl |
|- ( A e. CC -> -u A e. CC ) |
| 51 |
50
|
adantr |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> -u A e. CC ) |
| 52 |
|
efival |
|- ( -u A e. CC -> ( exp ` ( _i x. -u A ) ) = ( ( cos ` -u A ) + ( _i x. ( sin ` -u A ) ) ) ) |
| 53 |
51 52
|
syl |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( exp ` ( _i x. -u A ) ) = ( ( cos ` -u A ) + ( _i x. ( sin ` -u A ) ) ) ) |
| 54 |
|
cosneg |
|- ( A e. CC -> ( cos ` -u A ) = ( cos ` A ) ) |
| 55 |
54
|
adantr |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( cos ` -u A ) = ( cos ` A ) ) |
| 56 |
|
sinneg |
|- ( A e. CC -> ( sin ` -u A ) = -u ( sin ` A ) ) |
| 57 |
56
|
adantr |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( sin ` -u A ) = -u ( sin ` A ) ) |
| 58 |
57
|
oveq2d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( _i x. ( sin ` -u A ) ) = ( _i x. -u ( sin ` A ) ) ) |
| 59 |
|
mulneg2 |
|- ( ( _i e. CC /\ ( sin ` A ) e. CC ) -> ( _i x. -u ( sin ` A ) ) = -u ( _i x. ( sin ` A ) ) ) |
| 60 |
7 28 59
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( _i x. -u ( sin ` A ) ) = -u ( _i x. ( sin ` A ) ) ) |
| 61 |
58 60
|
eqtrd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( _i x. ( sin ` -u A ) ) = -u ( _i x. ( sin ` A ) ) ) |
| 62 |
55 61
|
oveq12d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( cos ` -u A ) + ( _i x. ( sin ` -u A ) ) ) = ( ( cos ` A ) + -u ( _i x. ( sin ` A ) ) ) ) |
| 63 |
53 62
|
eqtrd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( exp ` ( _i x. -u A ) ) = ( ( cos ` A ) + -u ( _i x. ( sin ` A ) ) ) ) |
| 64 |
|
simpl |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> A e. CC ) |
| 65 |
|
mulneg2 |
|- ( ( _i e. CC /\ A e. CC ) -> ( _i x. -u A ) = -u ( _i x. A ) ) |
| 66 |
7 64 65
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( _i x. -u A ) = -u ( _i x. A ) ) |
| 67 |
66
|
fveq2d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( exp ` ( _i x. -u A ) ) = ( exp ` -u ( _i x. A ) ) ) |
| 68 |
26 30
|
negsubd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( cos ` A ) + -u ( _i x. ( sin ` A ) ) ) = ( ( cos ` A ) - ( _i x. ( sin ` A ) ) ) ) |
| 69 |
63 67 68
|
3eqtr3d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( exp ` -u ( _i x. A ) ) = ( ( cos ` A ) - ( _i x. ( sin ` A ) ) ) ) |
| 70 |
69
|
oveq1d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( exp ` -u ( _i x. A ) ) / ( cos ` A ) ) = ( ( ( cos ` A ) - ( _i x. ( sin ` A ) ) ) / ( cos ` A ) ) ) |
| 71 |
|
eflog |
|- ( ( ( 1 - ( _i x. ( tan ` A ) ) ) e. CC /\ ( 1 - ( _i x. ( tan ` A ) ) ) =/= 0 ) -> ( exp ` ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) ) = ( 1 - ( _i x. ( tan ` A ) ) ) ) |
| 72 |
19 20 71
|
syl2anc |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( exp ` ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) ) = ( 1 - ( _i x. ( tan ` A ) ) ) ) |
| 73 |
49 70 72
|
3eqtr4d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( exp ` -u ( _i x. A ) ) / ( cos ` A ) ) = ( exp ` ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) ) ) |
| 74 |
46 73
|
oveq12d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( ( exp ` ( _i x. A ) ) / ( cos ` A ) ) / ( ( exp ` -u ( _i x. A ) ) / ( cos ` A ) ) ) = ( ( exp ` ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) ) / ( exp ` ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) ) ) ) |
| 75 |
|
mulcl |
|- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
| 76 |
7 64 75
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( _i x. A ) e. CC ) |
| 77 |
|
efcl |
|- ( ( _i x. A ) e. CC -> ( exp ` ( _i x. A ) ) e. CC ) |
| 78 |
76 77
|
syl |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( exp ` ( _i x. A ) ) e. CC ) |
| 79 |
76
|
negcld |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> -u ( _i x. A ) e. CC ) |
| 80 |
|
efcl |
|- ( -u ( _i x. A ) e. CC -> ( exp ` -u ( _i x. A ) ) e. CC ) |
| 81 |
79 80
|
syl |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( exp ` -u ( _i x. A ) ) e. CC ) |
| 82 |
|
efne0 |
|- ( -u ( _i x. A ) e. CC -> ( exp ` -u ( _i x. A ) ) =/= 0 ) |
| 83 |
79 82
|
syl |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( exp ` -u ( _i x. A ) ) =/= 0 ) |
| 84 |
78 81 26 83 1
|
divcan7d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( ( exp ` ( _i x. A ) ) / ( cos ` A ) ) / ( ( exp ` -u ( _i x. A ) ) / ( cos ` A ) ) ) = ( ( exp ` ( _i x. A ) ) / ( exp ` -u ( _i x. A ) ) ) ) |
| 85 |
|
efsub |
|- ( ( ( _i x. A ) e. CC /\ -u ( _i x. A ) e. CC ) -> ( exp ` ( ( _i x. A ) - -u ( _i x. A ) ) ) = ( ( exp ` ( _i x. A ) ) / ( exp ` -u ( _i x. A ) ) ) ) |
| 86 |
76 79 85
|
syl2anc |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( exp ` ( ( _i x. A ) - -u ( _i x. A ) ) ) = ( ( exp ` ( _i x. A ) ) / ( exp ` -u ( _i x. A ) ) ) ) |
| 87 |
76 76
|
subnegd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( _i x. A ) - -u ( _i x. A ) ) = ( ( _i x. A ) + ( _i x. A ) ) ) |
| 88 |
76
|
2timesd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( 2 x. ( _i x. A ) ) = ( ( _i x. A ) + ( _i x. A ) ) ) |
| 89 |
87 88
|
eqtr4d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( _i x. A ) - -u ( _i x. A ) ) = ( 2 x. ( _i x. A ) ) ) |
| 90 |
89
|
fveq2d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( exp ` ( ( _i x. A ) - -u ( _i x. A ) ) ) = ( exp ` ( 2 x. ( _i x. A ) ) ) ) |
| 91 |
84 86 90
|
3eqtr2d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( ( exp ` ( _i x. A ) ) / ( cos ` A ) ) / ( ( exp ` -u ( _i x. A ) ) / ( cos ` A ) ) ) = ( exp ` ( 2 x. ( _i x. A ) ) ) ) |
| 92 |
24 74 91
|
3eqtr2d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( exp ` ( ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) - ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) ) ) = ( exp ` ( 2 x. ( _i x. A ) ) ) ) |
| 93 |
92
|
fveq2d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( log ` ( exp ` ( ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) - ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) ) ) ) = ( log ` ( exp ` ( 2 x. ( _i x. A ) ) ) ) ) |
| 94 |
64
|
adantr |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) < 0 ) -> A e. CC ) |
| 95 |
94
|
renegd |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) < 0 ) -> ( Re ` -u A ) = -u ( Re ` A ) ) |
| 96 |
94
|
recld |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) < 0 ) -> ( Re ` A ) e. RR ) |
| 97 |
96
|
renegcld |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) < 0 ) -> -u ( Re ` A ) e. RR ) |
| 98 |
|
simpr |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) < 0 ) -> ( Re ` A ) < 0 ) |
| 99 |
96
|
lt0neg1d |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) < 0 ) -> ( ( Re ` A ) < 0 <-> 0 < -u ( Re ` A ) ) ) |
| 100 |
98 99
|
mpbid |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) < 0 ) -> 0 < -u ( Re ` A ) ) |
| 101 |
|
eliooord |
|- ( ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( -u ( _pi / 2 ) < ( Re ` A ) /\ ( Re ` A ) < ( _pi / 2 ) ) ) |
| 102 |
101
|
adantl |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( -u ( _pi / 2 ) < ( Re ` A ) /\ ( Re ` A ) < ( _pi / 2 ) ) ) |
| 103 |
102
|
simpld |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> -u ( _pi / 2 ) < ( Re ` A ) ) |
| 104 |
103
|
adantr |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) < 0 ) -> -u ( _pi / 2 ) < ( Re ` A ) ) |
| 105 |
|
halfpire |
|- ( _pi / 2 ) e. RR |
| 106 |
|
ltnegcon1 |
|- ( ( ( _pi / 2 ) e. RR /\ ( Re ` A ) e. RR ) -> ( -u ( _pi / 2 ) < ( Re ` A ) <-> -u ( Re ` A ) < ( _pi / 2 ) ) ) |
| 107 |
105 96 106
|
sylancr |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) < 0 ) -> ( -u ( _pi / 2 ) < ( Re ` A ) <-> -u ( Re ` A ) < ( _pi / 2 ) ) ) |
| 108 |
104 107
|
mpbid |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) < 0 ) -> -u ( Re ` A ) < ( _pi / 2 ) ) |
| 109 |
|
0xr |
|- 0 e. RR* |
| 110 |
105
|
rexri |
|- ( _pi / 2 ) e. RR* |
| 111 |
|
elioo2 |
|- ( ( 0 e. RR* /\ ( _pi / 2 ) e. RR* ) -> ( -u ( Re ` A ) e. ( 0 (,) ( _pi / 2 ) ) <-> ( -u ( Re ` A ) e. RR /\ 0 < -u ( Re ` A ) /\ -u ( Re ` A ) < ( _pi / 2 ) ) ) ) |
| 112 |
109 110 111
|
mp2an |
|- ( -u ( Re ` A ) e. ( 0 (,) ( _pi / 2 ) ) <-> ( -u ( Re ` A ) e. RR /\ 0 < -u ( Re ` A ) /\ -u ( Re ` A ) < ( _pi / 2 ) ) ) |
| 113 |
97 100 108 112
|
syl3anbrc |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) < 0 ) -> -u ( Re ` A ) e. ( 0 (,) ( _pi / 2 ) ) ) |
| 114 |
95 113
|
eqeltrd |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) < 0 ) -> ( Re ` -u A ) e. ( 0 (,) ( _pi / 2 ) ) ) |
| 115 |
|
tanregt0 |
|- ( ( -u A e. CC /\ ( Re ` -u A ) e. ( 0 (,) ( _pi / 2 ) ) ) -> 0 < ( Re ` ( tan ` -u A ) ) ) |
| 116 |
51 114 115
|
syl2an2r |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) < 0 ) -> 0 < ( Re ` ( tan ` -u A ) ) ) |
| 117 |
|
tanneg |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( tan ` -u A ) = -u ( tan ` A ) ) |
| 118 |
1 117
|
syldan |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( tan ` -u A ) = -u ( tan ` A ) ) |
| 119 |
118
|
adantr |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) < 0 ) -> ( tan ` -u A ) = -u ( tan ` A ) ) |
| 120 |
119
|
fveq2d |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) < 0 ) -> ( Re ` ( tan ` -u A ) ) = ( Re ` -u ( tan ` A ) ) ) |
| 121 |
9
|
adantr |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) < 0 ) -> ( tan ` A ) e. CC ) |
| 122 |
121
|
renegd |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) < 0 ) -> ( Re ` -u ( tan ` A ) ) = -u ( Re ` ( tan ` A ) ) ) |
| 123 |
120 122
|
eqtrd |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) < 0 ) -> ( Re ` ( tan ` -u A ) ) = -u ( Re ` ( tan ` A ) ) ) |
| 124 |
116 123
|
breqtrd |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) < 0 ) -> 0 < -u ( Re ` ( tan ` A ) ) ) |
| 125 |
9
|
recld |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Re ` ( tan ` A ) ) e. RR ) |
| 126 |
125
|
adantr |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) < 0 ) -> ( Re ` ( tan ` A ) ) e. RR ) |
| 127 |
126
|
lt0neg1d |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) < 0 ) -> ( ( Re ` ( tan ` A ) ) < 0 <-> 0 < -u ( Re ` ( tan ` A ) ) ) ) |
| 128 |
124 127
|
mpbird |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) < 0 ) -> ( Re ` ( tan ` A ) ) < 0 ) |
| 129 |
128
|
lt0ne0d |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) < 0 ) -> ( Re ` ( tan ` A ) ) =/= 0 ) |
| 130 |
|
atanlogsub |
|- ( ( ( tan ` A ) e. dom arctan /\ ( Re ` ( tan ` A ) ) =/= 0 ) -> ( ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) - ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) ) e. ran log ) |
| 131 |
3 129 130
|
syl2an2r |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) < 0 ) -> ( ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) - ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) ) e. ran log ) |
| 132 |
|
1re |
|- 1 e. RR |
| 133 |
|
ioossre |
|- ( -u 1 (,) 1 ) C_ RR |
| 134 |
7
|
a1i |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> _i e. CC ) |
| 135 |
11
|
adantr |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> ( _i x. ( tan ` A ) ) e. CC ) |
| 136 |
|
ine0 |
|- _i =/= 0 |
| 137 |
136
|
a1i |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> _i =/= 0 ) |
| 138 |
|
ixi |
|- ( _i x. _i ) = -u 1 |
| 139 |
138
|
oveq1i |
|- ( ( _i x. _i ) x. ( tan ` A ) ) = ( -u 1 x. ( tan ` A ) ) |
| 140 |
9
|
adantr |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> ( tan ` A ) e. CC ) |
| 141 |
140
|
mulm1d |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> ( -u 1 x. ( tan ` A ) ) = -u ( tan ` A ) ) |
| 142 |
118
|
adantr |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> ( tan ` -u A ) = -u ( tan ` A ) ) |
| 143 |
141 142
|
eqtr4d |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> ( -u 1 x. ( tan ` A ) ) = ( tan ` -u A ) ) |
| 144 |
139 143
|
eqtrid |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> ( ( _i x. _i ) x. ( tan ` A ) ) = ( tan ` -u A ) ) |
| 145 |
134 134 140
|
mulassd |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> ( ( _i x. _i ) x. ( tan ` A ) ) = ( _i x. ( _i x. ( tan ` A ) ) ) ) |
| 146 |
138
|
oveq1i |
|- ( ( _i x. _i ) x. A ) = ( -u 1 x. A ) |
| 147 |
64
|
adantr |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> A e. CC ) |
| 148 |
147
|
mulm1d |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> ( -u 1 x. A ) = -u A ) |
| 149 |
146 148
|
eqtrid |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> ( ( _i x. _i ) x. A ) = -u A ) |
| 150 |
134 134 147
|
mulassd |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> ( ( _i x. _i ) x. A ) = ( _i x. ( _i x. A ) ) ) |
| 151 |
149 150
|
eqtr3d |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> -u A = ( _i x. ( _i x. A ) ) ) |
| 152 |
151
|
fveq2d |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> ( tan ` -u A ) = ( tan ` ( _i x. ( _i x. A ) ) ) ) |
| 153 |
144 145 152
|
3eqtr3d |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> ( _i x. ( _i x. ( tan ` A ) ) ) = ( tan ` ( _i x. ( _i x. A ) ) ) ) |
| 154 |
134 135 137 153
|
mvllmuld |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> ( _i x. ( tan ` A ) ) = ( ( tan ` ( _i x. ( _i x. A ) ) ) / _i ) ) |
| 155 |
76
|
adantr |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> ( _i x. A ) e. CC ) |
| 156 |
|
reim |
|- ( A e. CC -> ( Re ` A ) = ( Im ` ( _i x. A ) ) ) |
| 157 |
156
|
adantr |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Re ` A ) = ( Im ` ( _i x. A ) ) ) |
| 158 |
157
|
eqeq1d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( Re ` A ) = 0 <-> ( Im ` ( _i x. A ) ) = 0 ) ) |
| 159 |
158
|
biimpa |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> ( Im ` ( _i x. A ) ) = 0 ) |
| 160 |
155 159
|
reim0bd |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> ( _i x. A ) e. RR ) |
| 161 |
|
tanhbnd |
|- ( ( _i x. A ) e. RR -> ( ( tan ` ( _i x. ( _i x. A ) ) ) / _i ) e. ( -u 1 (,) 1 ) ) |
| 162 |
160 161
|
syl |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> ( ( tan ` ( _i x. ( _i x. A ) ) ) / _i ) e. ( -u 1 (,) 1 ) ) |
| 163 |
154 162
|
eqeltrd |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> ( _i x. ( tan ` A ) ) e. ( -u 1 (,) 1 ) ) |
| 164 |
133 163
|
sselid |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> ( _i x. ( tan ` A ) ) e. RR ) |
| 165 |
|
readdcl |
|- ( ( 1 e. RR /\ ( _i x. ( tan ` A ) ) e. RR ) -> ( 1 + ( _i x. ( tan ` A ) ) ) e. RR ) |
| 166 |
132 164 165
|
sylancr |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> ( 1 + ( _i x. ( tan ` A ) ) ) e. RR ) |
| 167 |
|
df-neg |
|- -u 1 = ( 0 - 1 ) |
| 168 |
|
eliooord |
|- ( ( _i x. ( tan ` A ) ) e. ( -u 1 (,) 1 ) -> ( -u 1 < ( _i x. ( tan ` A ) ) /\ ( _i x. ( tan ` A ) ) < 1 ) ) |
| 169 |
163 168
|
syl |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> ( -u 1 < ( _i x. ( tan ` A ) ) /\ ( _i x. ( tan ` A ) ) < 1 ) ) |
| 170 |
169
|
simpld |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> -u 1 < ( _i x. ( tan ` A ) ) ) |
| 171 |
167 170
|
eqbrtrrid |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> ( 0 - 1 ) < ( _i x. ( tan ` A ) ) ) |
| 172 |
|
0red |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> 0 e. RR ) |
| 173 |
132
|
a1i |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> 1 e. RR ) |
| 174 |
172 173 164
|
ltsubadd2d |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> ( ( 0 - 1 ) < ( _i x. ( tan ` A ) ) <-> 0 < ( 1 + ( _i x. ( tan ` A ) ) ) ) ) |
| 175 |
171 174
|
mpbid |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> 0 < ( 1 + ( _i x. ( tan ` A ) ) ) ) |
| 176 |
166 175
|
elrpd |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> ( 1 + ( _i x. ( tan ` A ) ) ) e. RR+ ) |
| 177 |
176
|
relogcld |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) e. RR ) |
| 178 |
169
|
simprd |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> ( _i x. ( tan ` A ) ) < 1 ) |
| 179 |
|
difrp |
|- ( ( ( _i x. ( tan ` A ) ) e. RR /\ 1 e. RR ) -> ( ( _i x. ( tan ` A ) ) < 1 <-> ( 1 - ( _i x. ( tan ` A ) ) ) e. RR+ ) ) |
| 180 |
164 132 179
|
sylancl |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> ( ( _i x. ( tan ` A ) ) < 1 <-> ( 1 - ( _i x. ( tan ` A ) ) ) e. RR+ ) ) |
| 181 |
178 180
|
mpbid |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> ( 1 - ( _i x. ( tan ` A ) ) ) e. RR+ ) |
| 182 |
181
|
relogcld |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) e. RR ) |
| 183 |
177 182
|
resubcld |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> ( ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) - ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) ) e. RR ) |
| 184 |
|
relogrn |
|- ( ( ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) - ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) ) e. RR -> ( ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) - ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) ) e. ran log ) |
| 185 |
183 184
|
syl |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( Re ` A ) = 0 ) -> ( ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) - ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) ) e. ran log ) |
| 186 |
64
|
adantr |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ 0 < ( Re ` A ) ) -> A e. CC ) |
| 187 |
186
|
recld |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ 0 < ( Re ` A ) ) -> ( Re ` A ) e. RR ) |
| 188 |
|
simpr |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ 0 < ( Re ` A ) ) -> 0 < ( Re ` A ) ) |
| 189 |
102
|
simprd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Re ` A ) < ( _pi / 2 ) ) |
| 190 |
189
|
adantr |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ 0 < ( Re ` A ) ) -> ( Re ` A ) < ( _pi / 2 ) ) |
| 191 |
|
elioo2 |
|- ( ( 0 e. RR* /\ ( _pi / 2 ) e. RR* ) -> ( ( Re ` A ) e. ( 0 (,) ( _pi / 2 ) ) <-> ( ( Re ` A ) e. RR /\ 0 < ( Re ` A ) /\ ( Re ` A ) < ( _pi / 2 ) ) ) ) |
| 192 |
109 110 191
|
mp2an |
|- ( ( Re ` A ) e. ( 0 (,) ( _pi / 2 ) ) <-> ( ( Re ` A ) e. RR /\ 0 < ( Re ` A ) /\ ( Re ` A ) < ( _pi / 2 ) ) ) |
| 193 |
187 188 190 192
|
syl3anbrc |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ 0 < ( Re ` A ) ) -> ( Re ` A ) e. ( 0 (,) ( _pi / 2 ) ) ) |
| 194 |
|
tanregt0 |
|- ( ( A e. CC /\ ( Re ` A ) e. ( 0 (,) ( _pi / 2 ) ) ) -> 0 < ( Re ` ( tan ` A ) ) ) |
| 195 |
64 193 194
|
syl2an2r |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ 0 < ( Re ` A ) ) -> 0 < ( Re ` ( tan ` A ) ) ) |
| 196 |
195
|
gt0ne0d |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ 0 < ( Re ` A ) ) -> ( Re ` ( tan ` A ) ) =/= 0 ) |
| 197 |
3 196 130
|
syl2an2r |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ 0 < ( Re ` A ) ) -> ( ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) - ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) ) e. ran log ) |
| 198 |
|
recl |
|- ( A e. CC -> ( Re ` A ) e. RR ) |
| 199 |
198
|
adantr |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Re ` A ) e. RR ) |
| 200 |
|
0re |
|- 0 e. RR |
| 201 |
|
lttri4 |
|- ( ( ( Re ` A ) e. RR /\ 0 e. RR ) -> ( ( Re ` A ) < 0 \/ ( Re ` A ) = 0 \/ 0 < ( Re ` A ) ) ) |
| 202 |
199 200 201
|
sylancl |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( Re ` A ) < 0 \/ ( Re ` A ) = 0 \/ 0 < ( Re ` A ) ) ) |
| 203 |
131 185 197 202
|
mpjao3dan |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) - ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) ) e. ran log ) |
| 204 |
|
logef |
|- ( ( ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) - ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) ) e. ran log -> ( log ` ( exp ` ( ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) - ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) ) ) ) = ( ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) - ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) ) ) |
| 205 |
203 204
|
syl |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( log ` ( exp ` ( ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) - ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) ) ) ) = ( ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) - ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) ) ) |
| 206 |
|
2cn |
|- 2 e. CC |
| 207 |
|
mulcl |
|- ( ( 2 e. CC /\ ( _i x. A ) e. CC ) -> ( 2 x. ( _i x. A ) ) e. CC ) |
| 208 |
206 76 207
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( 2 x. ( _i x. A ) ) e. CC ) |
| 209 |
|
picn |
|- _pi e. CC |
| 210 |
|
2ne0 |
|- 2 =/= 0 |
| 211 |
|
divneg |
|- ( ( _pi e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> -u ( _pi / 2 ) = ( -u _pi / 2 ) ) |
| 212 |
209 206 210 211
|
mp3an |
|- -u ( _pi / 2 ) = ( -u _pi / 2 ) |
| 213 |
212 103
|
eqbrtrrid |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( -u _pi / 2 ) < ( Re ` A ) ) |
| 214 |
|
pire |
|- _pi e. RR |
| 215 |
214
|
renegcli |
|- -u _pi e. RR |
| 216 |
215
|
a1i |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> -u _pi e. RR ) |
| 217 |
|
2re |
|- 2 e. RR |
| 218 |
217
|
a1i |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> 2 e. RR ) |
| 219 |
|
2pos |
|- 0 < 2 |
| 220 |
219
|
a1i |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> 0 < 2 ) |
| 221 |
|
ltdivmul |
|- ( ( -u _pi e. RR /\ ( Re ` A ) e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( -u _pi / 2 ) < ( Re ` A ) <-> -u _pi < ( 2 x. ( Re ` A ) ) ) ) |
| 222 |
216 199 218 220 221
|
syl112anc |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( -u _pi / 2 ) < ( Re ` A ) <-> -u _pi < ( 2 x. ( Re ` A ) ) ) ) |
| 223 |
213 222
|
mpbid |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> -u _pi < ( 2 x. ( Re ` A ) ) ) |
| 224 |
|
immul2 |
|- ( ( 2 e. RR /\ ( _i x. A ) e. CC ) -> ( Im ` ( 2 x. ( _i x. A ) ) ) = ( 2 x. ( Im ` ( _i x. A ) ) ) ) |
| 225 |
217 76 224
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Im ` ( 2 x. ( _i x. A ) ) ) = ( 2 x. ( Im ` ( _i x. A ) ) ) ) |
| 226 |
157
|
oveq2d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( 2 x. ( Re ` A ) ) = ( 2 x. ( Im ` ( _i x. A ) ) ) ) |
| 227 |
225 226
|
eqtr4d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Im ` ( 2 x. ( _i x. A ) ) ) = ( 2 x. ( Re ` A ) ) ) |
| 228 |
223 227
|
breqtrrd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> -u _pi < ( Im ` ( 2 x. ( _i x. A ) ) ) ) |
| 229 |
|
remulcl |
|- ( ( 2 e. RR /\ ( Re ` A ) e. RR ) -> ( 2 x. ( Re ` A ) ) e. RR ) |
| 230 |
217 199 229
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( 2 x. ( Re ` A ) ) e. RR ) |
| 231 |
214
|
a1i |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> _pi e. RR ) |
| 232 |
|
ltmuldiv2 |
|- ( ( ( Re ` A ) e. RR /\ _pi e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( 2 x. ( Re ` A ) ) < _pi <-> ( Re ` A ) < ( _pi / 2 ) ) ) |
| 233 |
199 231 218 220 232
|
syl112anc |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( 2 x. ( Re ` A ) ) < _pi <-> ( Re ` A ) < ( _pi / 2 ) ) ) |
| 234 |
189 233
|
mpbird |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( 2 x. ( Re ` A ) ) < _pi ) |
| 235 |
230 231 234
|
ltled |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( 2 x. ( Re ` A ) ) <_ _pi ) |
| 236 |
227 235
|
eqbrtrd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Im ` ( 2 x. ( _i x. A ) ) ) <_ _pi ) |
| 237 |
|
ellogrn |
|- ( ( 2 x. ( _i x. A ) ) e. ran log <-> ( ( 2 x. ( _i x. A ) ) e. CC /\ -u _pi < ( Im ` ( 2 x. ( _i x. A ) ) ) /\ ( Im ` ( 2 x. ( _i x. A ) ) ) <_ _pi ) ) |
| 238 |
208 228 236 237
|
syl3anbrc |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( 2 x. ( _i x. A ) ) e. ran log ) |
| 239 |
|
logef |
|- ( ( 2 x. ( _i x. A ) ) e. ran log -> ( log ` ( exp ` ( 2 x. ( _i x. A ) ) ) ) = ( 2 x. ( _i x. A ) ) ) |
| 240 |
238 239
|
syl |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( log ` ( exp ` ( 2 x. ( _i x. A ) ) ) ) = ( 2 x. ( _i x. A ) ) ) |
| 241 |
93 205 240
|
3eqtr3d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) - ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) ) = ( 2 x. ( _i x. A ) ) ) |
| 242 |
241
|
negeqd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> -u ( ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) - ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) ) = -u ( 2 x. ( _i x. A ) ) ) |
| 243 |
22 242
|
eqtr3d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) - ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) ) = -u ( 2 x. ( _i x. A ) ) ) |
| 244 |
243
|
oveq2d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. ( tan ` A ) ) ) ) - ( log ` ( 1 + ( _i x. ( tan ` A ) ) ) ) ) ) = ( ( _i / 2 ) x. -u ( 2 x. ( _i x. A ) ) ) ) |
| 245 |
|
halfcl |
|- ( _i e. CC -> ( _i / 2 ) e. CC ) |
| 246 |
7 245
|
mp1i |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( _i / 2 ) e. CC ) |
| 247 |
206
|
a1i |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> 2 e. CC ) |
| 248 |
246 247 79
|
mulassd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( ( _i / 2 ) x. 2 ) x. -u ( _i x. A ) ) = ( ( _i / 2 ) x. ( 2 x. -u ( _i x. A ) ) ) ) |
| 249 |
7 206 210
|
divcan1i |
|- ( ( _i / 2 ) x. 2 ) = _i |
| 250 |
249
|
oveq1i |
|- ( ( ( _i / 2 ) x. 2 ) x. -u ( _i x. A ) ) = ( _i x. -u ( _i x. A ) ) |
| 251 |
33 33 51
|
mulassd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( _i x. _i ) x. -u A ) = ( _i x. ( _i x. -u A ) ) ) |
| 252 |
138
|
oveq1i |
|- ( ( _i x. _i ) x. -u A ) = ( -u 1 x. -u A ) |
| 253 |
|
mul2neg |
|- ( ( 1 e. CC /\ A e. CC ) -> ( -u 1 x. -u A ) = ( 1 x. A ) ) |
| 254 |
6 64 253
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( -u 1 x. -u A ) = ( 1 x. A ) ) |
| 255 |
|
mullid |
|- ( A e. CC -> ( 1 x. A ) = A ) |
| 256 |
255
|
adantr |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( 1 x. A ) = A ) |
| 257 |
254 256
|
eqtrd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( -u 1 x. -u A ) = A ) |
| 258 |
252 257
|
eqtrid |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( _i x. _i ) x. -u A ) = A ) |
| 259 |
66
|
oveq2d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( _i x. ( _i x. -u A ) ) = ( _i x. -u ( _i x. A ) ) ) |
| 260 |
251 258 259
|
3eqtr3rd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( _i x. -u ( _i x. A ) ) = A ) |
| 261 |
250 260
|
eqtrid |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( ( _i / 2 ) x. 2 ) x. -u ( _i x. A ) ) = A ) |
| 262 |
|
mulneg2 |
|- ( ( 2 e. CC /\ ( _i x. A ) e. CC ) -> ( 2 x. -u ( _i x. A ) ) = -u ( 2 x. ( _i x. A ) ) ) |
| 263 |
206 76 262
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( 2 x. -u ( _i x. A ) ) = -u ( 2 x. ( _i x. A ) ) ) |
| 264 |
263
|
oveq2d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( _i / 2 ) x. ( 2 x. -u ( _i x. A ) ) ) = ( ( _i / 2 ) x. -u ( 2 x. ( _i x. A ) ) ) ) |
| 265 |
248 261 264
|
3eqtr3rd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( _i / 2 ) x. -u ( 2 x. ( _i x. A ) ) ) = A ) |
| 266 |
5 244 265
|
3eqtrd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( arctan ` ( tan ` A ) ) = A ) |