Step |
Hyp |
Ref |
Expression |
1 |
|
atantayl3.1 |
|- F = ( n e. NN0 |-> ( ( -u 1 ^ n ) x. ( ( A ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) |
2 |
|
2nn0 |
|- 2 e. NN0 |
3 |
|
simpr |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> n e. NN0 ) |
4 |
|
nn0mulcl |
|- ( ( 2 e. NN0 /\ n e. NN0 ) -> ( 2 x. n ) e. NN0 ) |
5 |
2 3 4
|
sylancr |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> ( 2 x. n ) e. NN0 ) |
6 |
5
|
nn0cnd |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> ( 2 x. n ) e. CC ) |
7 |
|
ax-1cn |
|- 1 e. CC |
8 |
|
pncan |
|- ( ( ( 2 x. n ) e. CC /\ 1 e. CC ) -> ( ( ( 2 x. n ) + 1 ) - 1 ) = ( 2 x. n ) ) |
9 |
6 7 8
|
sylancl |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> ( ( ( 2 x. n ) + 1 ) - 1 ) = ( 2 x. n ) ) |
10 |
9
|
oveq1d |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> ( ( ( ( 2 x. n ) + 1 ) - 1 ) / 2 ) = ( ( 2 x. n ) / 2 ) ) |
11 |
|
nn0cn |
|- ( n e. NN0 -> n e. CC ) |
12 |
11
|
adantl |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> n e. CC ) |
13 |
|
2cnd |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> 2 e. CC ) |
14 |
|
2ne0 |
|- 2 =/= 0 |
15 |
14
|
a1i |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> 2 =/= 0 ) |
16 |
12 13 15
|
divcan3d |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> ( ( 2 x. n ) / 2 ) = n ) |
17 |
10 16
|
eqtr2d |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> n = ( ( ( ( 2 x. n ) + 1 ) - 1 ) / 2 ) ) |
18 |
17
|
oveq2d |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> ( -u 1 ^ n ) = ( -u 1 ^ ( ( ( ( 2 x. n ) + 1 ) - 1 ) / 2 ) ) ) |
19 |
18
|
oveq1d |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> ( ( -u 1 ^ n ) x. ( ( A ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) = ( ( -u 1 ^ ( ( ( ( 2 x. n ) + 1 ) - 1 ) / 2 ) ) x. ( ( A ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) |
20 |
19
|
mpteq2dva |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( n e. NN0 |-> ( ( -u 1 ^ n ) x. ( ( A ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) = ( n e. NN0 |-> ( ( -u 1 ^ ( ( ( ( 2 x. n ) + 1 ) - 1 ) / 2 ) ) x. ( ( A ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) ) |
21 |
1 20
|
syl5eq |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> F = ( n e. NN0 |-> ( ( -u 1 ^ ( ( ( ( 2 x. n ) + 1 ) - 1 ) / 2 ) ) x. ( ( A ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) ) |
22 |
21
|
seqeq3d |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 0 ( + , F ) = seq 0 ( + , ( n e. NN0 |-> ( ( -u 1 ^ ( ( ( ( 2 x. n ) + 1 ) - 1 ) / 2 ) ) x. ( ( A ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) ) ) |
23 |
|
eqid |
|- ( k e. NN |-> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( A ^ k ) / k ) ) ) ) = ( k e. NN |-> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( A ^ k ) / k ) ) ) ) |
24 |
23
|
atantayl2 |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 1 ( + , ( k e. NN |-> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( A ^ k ) / k ) ) ) ) ) ~~> ( arctan ` A ) ) |
25 |
|
neg1cn |
|- -u 1 e. CC |
26 |
|
expcl |
|- ( ( -u 1 e. CC /\ n e. NN0 ) -> ( -u 1 ^ n ) e. CC ) |
27 |
25 3 26
|
sylancr |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> ( -u 1 ^ n ) e. CC ) |
28 |
|
simpll |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> A e. CC ) |
29 |
|
peano2nn0 |
|- ( ( 2 x. n ) e. NN0 -> ( ( 2 x. n ) + 1 ) e. NN0 ) |
30 |
5 29
|
syl |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> ( ( 2 x. n ) + 1 ) e. NN0 ) |
31 |
28 30
|
expcld |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> ( A ^ ( ( 2 x. n ) + 1 ) ) e. CC ) |
32 |
|
nn0p1nn |
|- ( ( 2 x. n ) e. NN0 -> ( ( 2 x. n ) + 1 ) e. NN ) |
33 |
5 32
|
syl |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> ( ( 2 x. n ) + 1 ) e. NN ) |
34 |
33
|
nncnd |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> ( ( 2 x. n ) + 1 ) e. CC ) |
35 |
33
|
nnne0d |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> ( ( 2 x. n ) + 1 ) =/= 0 ) |
36 |
31 34 35
|
divcld |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> ( ( A ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) e. CC ) |
37 |
27 36
|
mulcld |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> ( ( -u 1 ^ n ) x. ( ( A ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) e. CC ) |
38 |
19 37
|
eqeltrrd |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> ( ( -u 1 ^ ( ( ( ( 2 x. n ) + 1 ) - 1 ) / 2 ) ) x. ( ( A ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) e. CC ) |
39 |
|
oveq1 |
|- ( k = ( ( 2 x. n ) + 1 ) -> ( k - 1 ) = ( ( ( 2 x. n ) + 1 ) - 1 ) ) |
40 |
39
|
oveq1d |
|- ( k = ( ( 2 x. n ) + 1 ) -> ( ( k - 1 ) / 2 ) = ( ( ( ( 2 x. n ) + 1 ) - 1 ) / 2 ) ) |
41 |
40
|
oveq2d |
|- ( k = ( ( 2 x. n ) + 1 ) -> ( -u 1 ^ ( ( k - 1 ) / 2 ) ) = ( -u 1 ^ ( ( ( ( 2 x. n ) + 1 ) - 1 ) / 2 ) ) ) |
42 |
|
oveq2 |
|- ( k = ( ( 2 x. n ) + 1 ) -> ( A ^ k ) = ( A ^ ( ( 2 x. n ) + 1 ) ) ) |
43 |
|
id |
|- ( k = ( ( 2 x. n ) + 1 ) -> k = ( ( 2 x. n ) + 1 ) ) |
44 |
42 43
|
oveq12d |
|- ( k = ( ( 2 x. n ) + 1 ) -> ( ( A ^ k ) / k ) = ( ( A ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) |
45 |
41 44
|
oveq12d |
|- ( k = ( ( 2 x. n ) + 1 ) -> ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( A ^ k ) / k ) ) = ( ( -u 1 ^ ( ( ( ( 2 x. n ) + 1 ) - 1 ) / 2 ) ) x. ( ( A ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) |
46 |
38 45
|
iserodd |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( seq 0 ( + , ( n e. NN0 |-> ( ( -u 1 ^ ( ( ( ( 2 x. n ) + 1 ) - 1 ) / 2 ) ) x. ( ( A ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) ) ~~> ( arctan ` A ) <-> seq 1 ( + , ( k e. NN |-> if ( 2 || k , 0 , ( ( -u 1 ^ ( ( k - 1 ) / 2 ) ) x. ( ( A ^ k ) / k ) ) ) ) ) ~~> ( arctan ` A ) ) ) |
47 |
24 46
|
mpbird |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 0 ( + , ( n e. NN0 |-> ( ( -u 1 ^ ( ( ( ( 2 x. n ) + 1 ) - 1 ) / 2 ) ) x. ( ( A ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) ) ~~> ( arctan ` A ) ) |
48 |
22 47
|
eqbrtrd |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 0 ( + , F ) ~~> ( arctan ` A ) ) |