| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 |  |-  ( x = A -> ( _i x. x ) = ( _i x. A ) ) | 
						
							| 2 | 1 | oveq2d |  |-  ( x = A -> ( 1 - ( _i x. x ) ) = ( 1 - ( _i x. A ) ) ) | 
						
							| 3 | 2 | fveq2d |  |-  ( x = A -> ( log ` ( 1 - ( _i x. x ) ) ) = ( log ` ( 1 - ( _i x. A ) ) ) ) | 
						
							| 4 | 1 | oveq2d |  |-  ( x = A -> ( 1 + ( _i x. x ) ) = ( 1 + ( _i x. A ) ) ) | 
						
							| 5 | 4 | fveq2d |  |-  ( x = A -> ( log ` ( 1 + ( _i x. x ) ) ) = ( log ` ( 1 + ( _i x. A ) ) ) ) | 
						
							| 6 | 3 5 | oveq12d |  |-  ( x = A -> ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) ) = ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) | 
						
							| 7 | 6 | oveq2d |  |-  ( x = A -> ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) ) ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) | 
						
							| 8 |  | df-atan |  |-  arctan = ( x e. ( CC \ { -u _i , _i } ) |-> ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) ) ) ) | 
						
							| 9 |  | ovex |  |-  ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) e. _V | 
						
							| 10 | 7 8 9 | fvmpt |  |-  ( A e. ( CC \ { -u _i , _i } ) -> ( arctan ` A ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) | 
						
							| 11 |  | atanf |  |-  arctan : ( CC \ { -u _i , _i } ) --> CC | 
						
							| 12 | 11 | fdmi |  |-  dom arctan = ( CC \ { -u _i , _i } ) | 
						
							| 13 | 10 12 | eleq2s |  |-  ( A e. dom arctan -> ( arctan ` A ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) |