Metamath Proof Explorer


Theorem atbase

Description: An atom is a member of the lattice base set (i.e. a lattice element). ( atelch analog.) (Contributed by NM, 10-Oct-2011)

Ref Expression
Hypotheses atombase.b
|- B = ( Base ` K )
atombase.a
|- A = ( Atoms ` K )
Assertion atbase
|- ( P e. A -> P e. B )

Proof

Step Hyp Ref Expression
1 atombase.b
 |-  B = ( Base ` K )
2 atombase.a
 |-  A = ( Atoms ` K )
3 n0i
 |-  ( P e. A -> -. A = (/) )
4 2 eqeq1i
 |-  ( A = (/) <-> ( Atoms ` K ) = (/) )
5 3 4 sylnib
 |-  ( P e. A -> -. ( Atoms ` K ) = (/) )
6 fvprc
 |-  ( -. K e. _V -> ( Atoms ` K ) = (/) )
7 5 6 nsyl2
 |-  ( P e. A -> K e. _V )
8 eqid
 |-  ( 0. ` K ) = ( 0. ` K )
9 eqid
 |-  ( 
10 1 8 9 2 isat
 |-  ( K e. _V -> ( P e. A <-> ( P e. B /\ ( 0. ` K ) ( 
11 10 simprbda
 |-  ( ( K e. _V /\ P e. A ) -> P e. B )
12 7 11 mpancom
 |-  ( P e. A -> P e. B )