Description: If a implies b, then a implies not not b. (Contributed by Jarvin Udandy, 28-Aug-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | atbiffatnnb | |- ( ( ph -> ps ) -> ( ph -> -. -. ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idd | |- ( ph -> ( ps -> ps ) ) |
|
2 | notnotb | |- ( ps <-> -. -. ps ) |
|
3 | 1 2 | syl6ib | |- ( ph -> ( ps -> -. -. ps ) ) |
4 | 3 | a2i | |- ( ( ph -> ps ) -> ( ph -> -. -. ps ) ) |