Step |
Hyp |
Ref |
Expression |
1 |
|
atbtwn.b |
|- B = ( Base ` K ) |
2 |
|
atbtwn.l |
|- .<_ = ( le ` K ) |
3 |
|
atbtwn.j |
|- .\/ = ( join ` K ) |
4 |
|
atbtwn.a |
|- A = ( Atoms ` K ) |
5 |
|
simpl33 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X /\ R .<_ ( P .\/ Q ) ) ) /\ R .<_ X ) -> R .<_ ( P .\/ Q ) ) |
6 |
|
simpr |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X /\ R .<_ ( P .\/ Q ) ) ) /\ R .<_ X ) -> R .<_ X ) |
7 |
|
simpl11 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X /\ R .<_ ( P .\/ Q ) ) ) /\ R .<_ X ) -> K e. HL ) |
8 |
7
|
hllatd |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X /\ R .<_ ( P .\/ Q ) ) ) /\ R .<_ X ) -> K e. Lat ) |
9 |
|
simpl2l |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X /\ R .<_ ( P .\/ Q ) ) ) /\ R .<_ X ) -> R e. A ) |
10 |
1 4
|
atbase |
|- ( R e. A -> R e. B ) |
11 |
9 10
|
syl |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X /\ R .<_ ( P .\/ Q ) ) ) /\ R .<_ X ) -> R e. B ) |
12 |
|
simpl1 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X /\ R .<_ ( P .\/ Q ) ) ) /\ R .<_ X ) -> ( K e. HL /\ P e. A /\ Q e. A ) ) |
13 |
1 3 4
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. B ) |
14 |
12 13
|
syl |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X /\ R .<_ ( P .\/ Q ) ) ) /\ R .<_ X ) -> ( P .\/ Q ) e. B ) |
15 |
|
simpl2r |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X /\ R .<_ ( P .\/ Q ) ) ) /\ R .<_ X ) -> X e. B ) |
16 |
|
eqid |
|- ( meet ` K ) = ( meet ` K ) |
17 |
1 2 16
|
latlem12 |
|- ( ( K e. Lat /\ ( R e. B /\ ( P .\/ Q ) e. B /\ X e. B ) ) -> ( ( R .<_ ( P .\/ Q ) /\ R .<_ X ) <-> R .<_ ( ( P .\/ Q ) ( meet ` K ) X ) ) ) |
18 |
8 11 14 15 17
|
syl13anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X /\ R .<_ ( P .\/ Q ) ) ) /\ R .<_ X ) -> ( ( R .<_ ( P .\/ Q ) /\ R .<_ X ) <-> R .<_ ( ( P .\/ Q ) ( meet ` K ) X ) ) ) |
19 |
5 6 18
|
mpbi2and |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X /\ R .<_ ( P .\/ Q ) ) ) /\ R .<_ X ) -> R .<_ ( ( P .\/ Q ) ( meet ` K ) X ) ) |
20 |
|
simpl12 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X /\ R .<_ ( P .\/ Q ) ) ) /\ R .<_ X ) -> P e. A ) |
21 |
|
simpl13 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X /\ R .<_ ( P .\/ Q ) ) ) /\ R .<_ X ) -> Q e. A ) |
22 |
|
simpl31 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X /\ R .<_ ( P .\/ Q ) ) ) /\ R .<_ X ) -> P .<_ X ) |
23 |
|
simpl32 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X /\ R .<_ ( P .\/ Q ) ) ) /\ R .<_ X ) -> -. Q .<_ X ) |
24 |
1 2 3 16 4
|
2atjm |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X ) ) -> ( ( P .\/ Q ) ( meet ` K ) X ) = P ) |
25 |
7 20 21 15 22 23 24
|
syl132anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X /\ R .<_ ( P .\/ Q ) ) ) /\ R .<_ X ) -> ( ( P .\/ Q ) ( meet ` K ) X ) = P ) |
26 |
19 25
|
breqtrd |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X /\ R .<_ ( P .\/ Q ) ) ) /\ R .<_ X ) -> R .<_ P ) |
27 |
|
hlatl |
|- ( K e. HL -> K e. AtLat ) |
28 |
7 27
|
syl |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X /\ R .<_ ( P .\/ Q ) ) ) /\ R .<_ X ) -> K e. AtLat ) |
29 |
2 4
|
atcmp |
|- ( ( K e. AtLat /\ R e. A /\ P e. A ) -> ( R .<_ P <-> R = P ) ) |
30 |
28 9 20 29
|
syl3anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X /\ R .<_ ( P .\/ Q ) ) ) /\ R .<_ X ) -> ( R .<_ P <-> R = P ) ) |
31 |
26 30
|
mpbid |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X /\ R .<_ ( P .\/ Q ) ) ) /\ R .<_ X ) -> R = P ) |
32 |
31
|
ex |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X /\ R .<_ ( P .\/ Q ) ) ) -> ( R .<_ X -> R = P ) ) |
33 |
32
|
necon3ad |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X /\ R .<_ ( P .\/ Q ) ) ) -> ( R =/= P -> -. R .<_ X ) ) |
34 |
|
simp31 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X /\ R .<_ ( P .\/ Q ) ) ) -> P .<_ X ) |
35 |
|
nbrne2 |
|- ( ( P .<_ X /\ -. R .<_ X ) -> P =/= R ) |
36 |
35
|
necomd |
|- ( ( P .<_ X /\ -. R .<_ X ) -> R =/= P ) |
37 |
36
|
ex |
|- ( P .<_ X -> ( -. R .<_ X -> R =/= P ) ) |
38 |
34 37
|
syl |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X /\ R .<_ ( P .\/ Q ) ) ) -> ( -. R .<_ X -> R =/= P ) ) |
39 |
33 38
|
impbid |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ X e. B ) /\ ( P .<_ X /\ -. Q .<_ X /\ R .<_ ( P .\/ Q ) ) ) -> ( R =/= P <-> -. R .<_ X ) ) |