Metamath Proof Explorer


Theorem atcmp

Description: If two atoms are comparable, they are equal. ( atsseq analog.) (Contributed by NM, 13-Oct-2011)

Ref Expression
Hypotheses atcmp.l
|- .<_ = ( le ` K )
atcmp.a
|- A = ( Atoms ` K )
Assertion atcmp
|- ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> ( P .<_ Q <-> P = Q ) )

Proof

Step Hyp Ref Expression
1 atcmp.l
 |-  .<_ = ( le ` K )
2 atcmp.a
 |-  A = ( Atoms ` K )
3 atlpos
 |-  ( K e. AtLat -> K e. Poset )
4 3 3ad2ant1
 |-  ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> K e. Poset )
5 eqid
 |-  ( Base ` K ) = ( Base ` K )
6 5 2 atbase
 |-  ( P e. A -> P e. ( Base ` K ) )
7 6 3ad2ant2
 |-  ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> P e. ( Base ` K ) )
8 5 2 atbase
 |-  ( Q e. A -> Q e. ( Base ` K ) )
9 8 3ad2ant3
 |-  ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> Q e. ( Base ` K ) )
10 eqid
 |-  ( 0. ` K ) = ( 0. ` K )
11 5 10 atl0cl
 |-  ( K e. AtLat -> ( 0. ` K ) e. ( Base ` K ) )
12 11 3ad2ant1
 |-  ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> ( 0. ` K ) e. ( Base ` K ) )
13 eqid
 |-  ( 
14 10 13 2 atcvr0
 |-  ( ( K e. AtLat /\ P e. A ) -> ( 0. ` K ) ( 
15 14 3adant3
 |-  ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> ( 0. ` K ) ( 
16 10 13 2 atcvr0
 |-  ( ( K e. AtLat /\ Q e. A ) -> ( 0. ` K ) ( 
17 16 3adant2
 |-  ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> ( 0. ` K ) ( 
18 5 1 13 cvrcmp
 |-  ( ( K e. Poset /\ ( P e. ( Base ` K ) /\ Q e. ( Base ` K ) /\ ( 0. ` K ) e. ( Base ` K ) ) /\ ( ( 0. ` K ) (  ( P .<_ Q <-> P = Q ) )
19 4 7 9 12 15 17 18 syl132anc
 |-  ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> ( P .<_ Q <-> P = Q ) )