Step |
Hyp |
Ref |
Expression |
1 |
|
atnemeq0 |
|- ( ( A e. HAtoms /\ B e. HAtoms ) -> ( A =/= B <-> ( A i^i B ) = 0H ) ) |
2 |
|
atelch |
|- ( A e. HAtoms -> A e. CH ) |
3 |
|
cvp |
|- ( ( A e. CH /\ B e. HAtoms ) -> ( ( A i^i B ) = 0H <-> A |
4 |
2 3
|
sylan |
|- ( ( A e. HAtoms /\ B e. HAtoms ) -> ( ( A i^i B ) = 0H <-> A |
5 |
|
atcv0 |
|- ( A e. HAtoms -> 0H |
6 |
5
|
adantr |
|- ( ( A e. HAtoms /\ B e. HAtoms ) -> 0H |
7 |
6
|
biantrurd |
|- ( ( A e. HAtoms /\ B e. HAtoms ) -> ( A ( 0H |
8 |
1 4 7
|
3bitrd |
|- ( ( A e. HAtoms /\ B e. HAtoms ) -> ( A =/= B <-> ( 0H |
9 |
|
atelch |
|- ( B e. HAtoms -> B e. CH ) |
10 |
|
chjcl |
|- ( ( A e. CH /\ B e. CH ) -> ( A vH B ) e. CH ) |
11 |
|
h0elch |
|- 0H e. CH |
12 |
|
cvntr |
|- ( ( 0H e. CH /\ A e. CH /\ ( A vH B ) e. CH ) -> ( ( 0H -. 0H |
13 |
11 12
|
mp3an1 |
|- ( ( A e. CH /\ ( A vH B ) e. CH ) -> ( ( 0H -. 0H |
14 |
10 13
|
syldan |
|- ( ( A e. CH /\ B e. CH ) -> ( ( 0H -. 0H |
15 |
2 9 14
|
syl2an |
|- ( ( A e. HAtoms /\ B e. HAtoms ) -> ( ( 0H -. 0H |
16 |
8 15
|
sylbid |
|- ( ( A e. HAtoms /\ B e. HAtoms ) -> ( A =/= B -> -. 0H |
17 |
16
|
necon4ad |
|- ( ( A e. HAtoms /\ B e. HAtoms ) -> ( 0H A = B ) ) |
18 |
|
oveq1 |
|- ( A = B -> ( A vH B ) = ( B vH B ) ) |
19 |
|
chjidm |
|- ( B e. CH -> ( B vH B ) = B ) |
20 |
9 19
|
syl |
|- ( B e. HAtoms -> ( B vH B ) = B ) |
21 |
18 20
|
sylan9eq |
|- ( ( A = B /\ B e. HAtoms ) -> ( A vH B ) = B ) |
22 |
21
|
eqcomd |
|- ( ( A = B /\ B e. HAtoms ) -> B = ( A vH B ) ) |
23 |
22
|
eleq1d |
|- ( ( A = B /\ B e. HAtoms ) -> ( B e. HAtoms <-> ( A vH B ) e. HAtoms ) ) |
24 |
23
|
ex |
|- ( A = B -> ( B e. HAtoms -> ( B e. HAtoms <-> ( A vH B ) e. HAtoms ) ) ) |
25 |
24
|
ibd |
|- ( A = B -> ( B e. HAtoms -> ( A vH B ) e. HAtoms ) ) |
26 |
|
atcv0 |
|- ( ( A vH B ) e. HAtoms -> 0H |
27 |
25 26
|
syl6com |
|- ( B e. HAtoms -> ( A = B -> 0H |
28 |
27
|
adantl |
|- ( ( A e. HAtoms /\ B e. HAtoms ) -> ( A = B -> 0H |
29 |
17 28
|
impbid |
|- ( ( A e. HAtoms /\ B e. HAtoms ) -> ( 0H A = B ) ) |