| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							atnemeq0 | 
							 |-  ( ( A e. HAtoms /\ B e. HAtoms ) -> ( A =/= B <-> ( A i^i B ) = 0H ) )  | 
						
						
							| 2 | 
							
								
							 | 
							atelch | 
							 |-  ( A e. HAtoms -> A e. CH )  | 
						
						
							| 3 | 
							
								
							 | 
							cvp | 
							 |-  ( ( A e. CH /\ B e. HAtoms ) -> ( ( A i^i B ) = 0H <-> A   | 
						
						
							| 4 | 
							
								2 3
							 | 
							sylan | 
							 |-  ( ( A e. HAtoms /\ B e. HAtoms ) -> ( ( A i^i B ) = 0H <-> A   | 
						
						
							| 5 | 
							
								
							 | 
							atcv0 | 
							 |-  ( A e. HAtoms -> 0H   | 
						
						
							| 6 | 
							
								5
							 | 
							adantr | 
							 |-  ( ( A e. HAtoms /\ B e. HAtoms ) -> 0H   | 
						
						
							| 7 | 
							
								6
							 | 
							biantrurd | 
							 |-  ( ( A e. HAtoms /\ B e. HAtoms ) -> ( A  ( 0H   | 
						
						
							| 8 | 
							
								1 4 7
							 | 
							3bitrd | 
							 |-  ( ( A e. HAtoms /\ B e. HAtoms ) -> ( A =/= B <-> ( 0H   | 
						
						
							| 9 | 
							
								
							 | 
							atelch | 
							 |-  ( B e. HAtoms -> B e. CH )  | 
						
						
							| 10 | 
							
								
							 | 
							chjcl | 
							 |-  ( ( A e. CH /\ B e. CH ) -> ( A vH B ) e. CH )  | 
						
						
							| 11 | 
							
								
							 | 
							h0elch | 
							 |-  0H e. CH  | 
						
						
							| 12 | 
							
								
							 | 
							cvntr | 
							 |-  ( ( 0H e. CH /\ A e. CH /\ ( A vH B ) e. CH ) -> ( ( 0H  -. 0H   | 
						
						
							| 13 | 
							
								11 12
							 | 
							mp3an1 | 
							 |-  ( ( A e. CH /\ ( A vH B ) e. CH ) -> ( ( 0H  -. 0H   | 
						
						
							| 14 | 
							
								10 13
							 | 
							syldan | 
							 |-  ( ( A e. CH /\ B e. CH ) -> ( ( 0H  -. 0H   | 
						
						
							| 15 | 
							
								2 9 14
							 | 
							syl2an | 
							 |-  ( ( A e. HAtoms /\ B e. HAtoms ) -> ( ( 0H  -. 0H   | 
						
						
							| 16 | 
							
								8 15
							 | 
							sylbid | 
							 |-  ( ( A e. HAtoms /\ B e. HAtoms ) -> ( A =/= B -> -. 0H   | 
						
						
							| 17 | 
							
								16
							 | 
							necon4ad | 
							 |-  ( ( A e. HAtoms /\ B e. HAtoms ) -> ( 0H  A = B ) )  | 
						
						
							| 18 | 
							
								
							 | 
							oveq1 | 
							 |-  ( A = B -> ( A vH B ) = ( B vH B ) )  | 
						
						
							| 19 | 
							
								
							 | 
							chjidm | 
							 |-  ( B e. CH -> ( B vH B ) = B )  | 
						
						
							| 20 | 
							
								9 19
							 | 
							syl | 
							 |-  ( B e. HAtoms -> ( B vH B ) = B )  | 
						
						
							| 21 | 
							
								18 20
							 | 
							sylan9eq | 
							 |-  ( ( A = B /\ B e. HAtoms ) -> ( A vH B ) = B )  | 
						
						
							| 22 | 
							
								21
							 | 
							eqcomd | 
							 |-  ( ( A = B /\ B e. HAtoms ) -> B = ( A vH B ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							eleq1d | 
							 |-  ( ( A = B /\ B e. HAtoms ) -> ( B e. HAtoms <-> ( A vH B ) e. HAtoms ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							ex | 
							 |-  ( A = B -> ( B e. HAtoms -> ( B e. HAtoms <-> ( A vH B ) e. HAtoms ) ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							ibd | 
							 |-  ( A = B -> ( B e. HAtoms -> ( A vH B ) e. HAtoms ) )  | 
						
						
							| 26 | 
							
								
							 | 
							atcv0 | 
							 |-  ( ( A vH B ) e. HAtoms -> 0H   | 
						
						
							| 27 | 
							
								25 26
							 | 
							syl6com | 
							 |-  ( B e. HAtoms -> ( A = B -> 0H   | 
						
						
							| 28 | 
							
								27
							 | 
							adantl | 
							 |-  ( ( A e. HAtoms /\ B e. HAtoms ) -> ( A = B -> 0H   | 
						
						
							| 29 | 
							
								17 28
							 | 
							impbid | 
							 |-  ( ( A e. HAtoms /\ B e. HAtoms ) -> ( 0H  A = B ) )  |