Metamath Proof Explorer


Theorem atcv0eq

Description: Two atoms covering the zero subspace are equal. (Contributed by NM, 26-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion atcv0eq
|- ( ( A e. HAtoms /\ B e. HAtoms ) -> ( 0H  A = B ) )

Proof

Step Hyp Ref Expression
1 atnemeq0
 |-  ( ( A e. HAtoms /\ B e. HAtoms ) -> ( A =/= B <-> ( A i^i B ) = 0H ) )
2 atelch
 |-  ( A e. HAtoms -> A e. CH )
3 cvp
 |-  ( ( A e. CH /\ B e. HAtoms ) -> ( ( A i^i B ) = 0H <-> A 
4 2 3 sylan
 |-  ( ( A e. HAtoms /\ B e. HAtoms ) -> ( ( A i^i B ) = 0H <-> A 
5 atcv0
 |-  ( A e. HAtoms -> 0H 
6 5 adantr
 |-  ( ( A e. HAtoms /\ B e. HAtoms ) -> 0H 
7 6 biantrurd
 |-  ( ( A e. HAtoms /\ B e. HAtoms ) -> ( A  ( 0H 
8 1 4 7 3bitrd
 |-  ( ( A e. HAtoms /\ B e. HAtoms ) -> ( A =/= B <-> ( 0H 
9 atelch
 |-  ( B e. HAtoms -> B e. CH )
10 chjcl
 |-  ( ( A e. CH /\ B e. CH ) -> ( A vH B ) e. CH )
11 h0elch
 |-  0H e. CH
12 cvntr
 |-  ( ( 0H e. CH /\ A e. CH /\ ( A vH B ) e. CH ) -> ( ( 0H  -. 0H 
13 11 12 mp3an1
 |-  ( ( A e. CH /\ ( A vH B ) e. CH ) -> ( ( 0H  -. 0H 
14 10 13 syldan
 |-  ( ( A e. CH /\ B e. CH ) -> ( ( 0H  -. 0H 
15 2 9 14 syl2an
 |-  ( ( A e. HAtoms /\ B e. HAtoms ) -> ( ( 0H  -. 0H 
16 8 15 sylbid
 |-  ( ( A e. HAtoms /\ B e. HAtoms ) -> ( A =/= B -> -. 0H 
17 16 necon4ad
 |-  ( ( A e. HAtoms /\ B e. HAtoms ) -> ( 0H  A = B ) )
18 oveq1
 |-  ( A = B -> ( A vH B ) = ( B vH B ) )
19 chjidm
 |-  ( B e. CH -> ( B vH B ) = B )
20 9 19 syl
 |-  ( B e. HAtoms -> ( B vH B ) = B )
21 18 20 sylan9eq
 |-  ( ( A = B /\ B e. HAtoms ) -> ( A vH B ) = B )
22 21 eqcomd
 |-  ( ( A = B /\ B e. HAtoms ) -> B = ( A vH B ) )
23 22 eleq1d
 |-  ( ( A = B /\ B e. HAtoms ) -> ( B e. HAtoms <-> ( A vH B ) e. HAtoms ) )
24 23 ex
 |-  ( A = B -> ( B e. HAtoms -> ( B e. HAtoms <-> ( A vH B ) e. HAtoms ) ) )
25 24 ibd
 |-  ( A = B -> ( B e. HAtoms -> ( A vH B ) e. HAtoms ) )
26 atcv0
 |-  ( ( A vH B ) e. HAtoms -> 0H 
27 25 26 syl6com
 |-  ( B e. HAtoms -> ( A = B -> 0H 
28 27 adantl
 |-  ( ( A e. HAtoms /\ B e. HAtoms ) -> ( A = B -> 0H 
29 17 28 impbid
 |-  ( ( A e. HAtoms /\ B e. HAtoms ) -> ( 0H  A = B ) )