| Step |
Hyp |
Ref |
Expression |
| 1 |
|
atcvat3.1 |
|- A e. CH |
| 2 |
|
chcv1 |
|- ( ( A e. CH /\ C e. HAtoms ) -> ( -. C C_ A <-> A |
| 3 |
1 2
|
mpan |
|- ( C e. HAtoms -> ( -. C C_ A <-> A |
| 4 |
3
|
biimpa |
|- ( ( C e. HAtoms /\ -. C C_ A ) -> A |
| 5 |
4
|
ad2ant2lr |
|- ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ ( -. C C_ A /\ B C_ ( A vH C ) ) ) -> A |
| 6 |
|
atelch |
|- ( B e. HAtoms -> B e. CH ) |
| 7 |
|
atelch |
|- ( C e. HAtoms -> C e. CH ) |
| 8 |
6 7
|
anim12i |
|- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( B e. CH /\ C e. CH ) ) |
| 9 |
|
chjcom |
|- ( ( B e. CH /\ C e. CH ) -> ( B vH C ) = ( C vH B ) ) |
| 10 |
9
|
oveq2d |
|- ( ( B e. CH /\ C e. CH ) -> ( A vH ( B vH C ) ) = ( A vH ( C vH B ) ) ) |
| 11 |
|
chjass |
|- ( ( A e. CH /\ C e. CH /\ B e. CH ) -> ( ( A vH C ) vH B ) = ( A vH ( C vH B ) ) ) |
| 12 |
1 11
|
mp3an1 |
|- ( ( C e. CH /\ B e. CH ) -> ( ( A vH C ) vH B ) = ( A vH ( C vH B ) ) ) |
| 13 |
12
|
ancoms |
|- ( ( B e. CH /\ C e. CH ) -> ( ( A vH C ) vH B ) = ( A vH ( C vH B ) ) ) |
| 14 |
10 13
|
eqtr4d |
|- ( ( B e. CH /\ C e. CH ) -> ( A vH ( B vH C ) ) = ( ( A vH C ) vH B ) ) |
| 15 |
14
|
adantr |
|- ( ( ( B e. CH /\ C e. CH ) /\ B C_ ( A vH C ) ) -> ( A vH ( B vH C ) ) = ( ( A vH C ) vH B ) ) |
| 16 |
|
simpl |
|- ( ( B e. CH /\ C e. CH ) -> B e. CH ) |
| 17 |
|
chjcl |
|- ( ( A e. CH /\ C e. CH ) -> ( A vH C ) e. CH ) |
| 18 |
1 17
|
mpan |
|- ( C e. CH -> ( A vH C ) e. CH ) |
| 19 |
18
|
adantl |
|- ( ( B e. CH /\ C e. CH ) -> ( A vH C ) e. CH ) |
| 20 |
|
chlej2 |
|- ( ( ( B e. CH /\ ( A vH C ) e. CH /\ ( A vH C ) e. CH ) /\ B C_ ( A vH C ) ) -> ( ( A vH C ) vH B ) C_ ( ( A vH C ) vH ( A vH C ) ) ) |
| 21 |
20
|
ex |
|- ( ( B e. CH /\ ( A vH C ) e. CH /\ ( A vH C ) e. CH ) -> ( B C_ ( A vH C ) -> ( ( A vH C ) vH B ) C_ ( ( A vH C ) vH ( A vH C ) ) ) ) |
| 22 |
16 19 19 21
|
syl3anc |
|- ( ( B e. CH /\ C e. CH ) -> ( B C_ ( A vH C ) -> ( ( A vH C ) vH B ) C_ ( ( A vH C ) vH ( A vH C ) ) ) ) |
| 23 |
22
|
imp |
|- ( ( ( B e. CH /\ C e. CH ) /\ B C_ ( A vH C ) ) -> ( ( A vH C ) vH B ) C_ ( ( A vH C ) vH ( A vH C ) ) ) |
| 24 |
15 23
|
eqsstrd |
|- ( ( ( B e. CH /\ C e. CH ) /\ B C_ ( A vH C ) ) -> ( A vH ( B vH C ) ) C_ ( ( A vH C ) vH ( A vH C ) ) ) |
| 25 |
|
chjidm |
|- ( ( A vH C ) e. CH -> ( ( A vH C ) vH ( A vH C ) ) = ( A vH C ) ) |
| 26 |
18 25
|
syl |
|- ( C e. CH -> ( ( A vH C ) vH ( A vH C ) ) = ( A vH C ) ) |
| 27 |
26
|
ad2antlr |
|- ( ( ( B e. CH /\ C e. CH ) /\ B C_ ( A vH C ) ) -> ( ( A vH C ) vH ( A vH C ) ) = ( A vH C ) ) |
| 28 |
24 27
|
sseqtrd |
|- ( ( ( B e. CH /\ C e. CH ) /\ B C_ ( A vH C ) ) -> ( A vH ( B vH C ) ) C_ ( A vH C ) ) |
| 29 |
|
simpr |
|- ( ( B e. CH /\ C e. CH ) -> C e. CH ) |
| 30 |
|
chjcl |
|- ( ( B e. CH /\ C e. CH ) -> ( B vH C ) e. CH ) |
| 31 |
|
chub2 |
|- ( ( C e. CH /\ B e. CH ) -> C C_ ( B vH C ) ) |
| 32 |
31
|
ancoms |
|- ( ( B e. CH /\ C e. CH ) -> C C_ ( B vH C ) ) |
| 33 |
|
chlej2 |
|- ( ( ( C e. CH /\ ( B vH C ) e. CH /\ A e. CH ) /\ C C_ ( B vH C ) ) -> ( A vH C ) C_ ( A vH ( B vH C ) ) ) |
| 34 |
1 33
|
mp3anl3 |
|- ( ( ( C e. CH /\ ( B vH C ) e. CH ) /\ C C_ ( B vH C ) ) -> ( A vH C ) C_ ( A vH ( B vH C ) ) ) |
| 35 |
29 30 32 34
|
syl21anc |
|- ( ( B e. CH /\ C e. CH ) -> ( A vH C ) C_ ( A vH ( B vH C ) ) ) |
| 36 |
35
|
adantr |
|- ( ( ( B e. CH /\ C e. CH ) /\ B C_ ( A vH C ) ) -> ( A vH C ) C_ ( A vH ( B vH C ) ) ) |
| 37 |
28 36
|
eqssd |
|- ( ( ( B e. CH /\ C e. CH ) /\ B C_ ( A vH C ) ) -> ( A vH ( B vH C ) ) = ( A vH C ) ) |
| 38 |
8 37
|
sylan |
|- ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ B C_ ( A vH C ) ) -> ( A vH ( B vH C ) ) = ( A vH C ) ) |
| 39 |
38
|
breq2d |
|- ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ B C_ ( A vH C ) ) -> ( A A |
| 40 |
39
|
adantrl |
|- ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ ( -. C C_ A /\ B C_ ( A vH C ) ) ) -> ( A A |
| 41 |
5 40
|
mpbird |
|- ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ ( -. C C_ A /\ B C_ ( A vH C ) ) ) -> A |
| 42 |
41
|
ex |
|- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( ( -. C C_ A /\ B C_ ( A vH C ) ) -> A |
| 43 |
30 1
|
jctil |
|- ( ( B e. CH /\ C e. CH ) -> ( A e. CH /\ ( B vH C ) e. CH ) ) |
| 44 |
6 7 43
|
syl2an |
|- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( A e. CH /\ ( B vH C ) e. CH ) ) |
| 45 |
|
cvexch |
|- ( ( A e. CH /\ ( B vH C ) e. CH ) -> ( ( A i^i ( B vH C ) ) A |
| 46 |
44 45
|
syl |
|- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( ( A i^i ( B vH C ) ) A |
| 47 |
42 46
|
sylibrd |
|- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( ( -. C C_ A /\ B C_ ( A vH C ) ) -> ( A i^i ( B vH C ) ) |
| 48 |
47
|
adantr |
|- ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ -. B = C ) -> ( ( -. C C_ A /\ B C_ ( A vH C ) ) -> ( A i^i ( B vH C ) ) |
| 49 |
|
chincl |
|- ( ( A e. CH /\ ( B vH C ) e. CH ) -> ( A i^i ( B vH C ) ) e. CH ) |
| 50 |
1 30 49
|
sylancr |
|- ( ( B e. CH /\ C e. CH ) -> ( A i^i ( B vH C ) ) e. CH ) |
| 51 |
6 7 50
|
syl2an |
|- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( A i^i ( B vH C ) ) e. CH ) |
| 52 |
|
simpl |
|- ( ( B e. HAtoms /\ C e. HAtoms ) -> B e. HAtoms ) |
| 53 |
|
simpr |
|- ( ( B e. HAtoms /\ C e. HAtoms ) -> C e. HAtoms ) |
| 54 |
|
atcvat2 |
|- ( ( ( A i^i ( B vH C ) ) e. CH /\ B e. HAtoms /\ C e. HAtoms ) -> ( ( -. B = C /\ ( A i^i ( B vH C ) ) ( A i^i ( B vH C ) ) e. HAtoms ) ) |
| 55 |
51 52 53 54
|
syl3anc |
|- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( ( -. B = C /\ ( A i^i ( B vH C ) ) ( A i^i ( B vH C ) ) e. HAtoms ) ) |
| 56 |
55
|
expdimp |
|- ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ -. B = C ) -> ( ( A i^i ( B vH C ) ) ( A i^i ( B vH C ) ) e. HAtoms ) ) |
| 57 |
48 56
|
syld |
|- ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ -. B = C ) -> ( ( -. C C_ A /\ B C_ ( A vH C ) ) -> ( A i^i ( B vH C ) ) e. HAtoms ) ) |
| 58 |
57
|
exp4b |
|- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( -. B = C -> ( -. C C_ A -> ( B C_ ( A vH C ) -> ( A i^i ( B vH C ) ) e. HAtoms ) ) ) ) |
| 59 |
58
|
imp4c |
|- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( ( ( -. B = C /\ -. C C_ A ) /\ B C_ ( A vH C ) ) -> ( A i^i ( B vH C ) ) e. HAtoms ) ) |