| Step |
Hyp |
Ref |
Expression |
| 1 |
|
atcvat3.1 |
|- A e. CH |
| 2 |
1
|
hatomici |
|- ( A =/= 0H -> E. x e. HAtoms x C_ A ) |
| 3 |
|
atelch |
|- ( C e. HAtoms -> C e. CH ) |
| 4 |
|
atelch |
|- ( x e. HAtoms -> x e. CH ) |
| 5 |
|
chub1 |
|- ( ( C e. CH /\ x e. CH ) -> C C_ ( C vH x ) ) |
| 6 |
3 4 5
|
syl2an |
|- ( ( C e. HAtoms /\ x e. HAtoms ) -> C C_ ( C vH x ) ) |
| 7 |
|
sseq1 |
|- ( B = C -> ( B C_ ( C vH x ) <-> C C_ ( C vH x ) ) ) |
| 8 |
6 7
|
imbitrrid |
|- ( B = C -> ( ( C e. HAtoms /\ x e. HAtoms ) -> B C_ ( C vH x ) ) ) |
| 9 |
8
|
expd |
|- ( B = C -> ( C e. HAtoms -> ( x e. HAtoms -> B C_ ( C vH x ) ) ) ) |
| 10 |
9
|
impcom |
|- ( ( C e. HAtoms /\ B = C ) -> ( x e. HAtoms -> B C_ ( C vH x ) ) ) |
| 11 |
10
|
anim2d |
|- ( ( C e. HAtoms /\ B = C ) -> ( ( x C_ A /\ x e. HAtoms ) -> ( x C_ A /\ B C_ ( C vH x ) ) ) ) |
| 12 |
11
|
expcomd |
|- ( ( C e. HAtoms /\ B = C ) -> ( x e. HAtoms -> ( x C_ A -> ( x C_ A /\ B C_ ( C vH x ) ) ) ) ) |
| 13 |
12
|
reximdvai |
|- ( ( C e. HAtoms /\ B = C ) -> ( E. x e. HAtoms x C_ A -> E. x e. HAtoms ( x C_ A /\ B C_ ( C vH x ) ) ) ) |
| 14 |
2 13
|
syl5 |
|- ( ( C e. HAtoms /\ B = C ) -> ( A =/= 0H -> E. x e. HAtoms ( x C_ A /\ B C_ ( C vH x ) ) ) ) |
| 15 |
14
|
ex |
|- ( C e. HAtoms -> ( B = C -> ( A =/= 0H -> E. x e. HAtoms ( x C_ A /\ B C_ ( C vH x ) ) ) ) ) |
| 16 |
15
|
a1i |
|- ( B C_ ( A vH C ) -> ( C e. HAtoms -> ( B = C -> ( A =/= 0H -> E. x e. HAtoms ( x C_ A /\ B C_ ( C vH x ) ) ) ) ) ) |
| 17 |
16
|
com4l |
|- ( C e. HAtoms -> ( B = C -> ( A =/= 0H -> ( B C_ ( A vH C ) -> E. x e. HAtoms ( x C_ A /\ B C_ ( C vH x ) ) ) ) ) ) |
| 18 |
17
|
imp4a |
|- ( C e. HAtoms -> ( B = C -> ( ( A =/= 0H /\ B C_ ( A vH C ) ) -> E. x e. HAtoms ( x C_ A /\ B C_ ( C vH x ) ) ) ) ) |
| 19 |
18
|
adantl |
|- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( B = C -> ( ( A =/= 0H /\ B C_ ( A vH C ) ) -> E. x e. HAtoms ( x C_ A /\ B C_ ( C vH x ) ) ) ) ) |
| 20 |
|
atelch |
|- ( B e. HAtoms -> B e. CH ) |
| 21 |
|
chlejb2 |
|- ( ( C e. CH /\ A e. CH ) -> ( C C_ A <-> ( A vH C ) = A ) ) |
| 22 |
1 21
|
mpan2 |
|- ( C e. CH -> ( C C_ A <-> ( A vH C ) = A ) ) |
| 23 |
22
|
biimpa |
|- ( ( C e. CH /\ C C_ A ) -> ( A vH C ) = A ) |
| 24 |
23
|
sseq2d |
|- ( ( C e. CH /\ C C_ A ) -> ( B C_ ( A vH C ) <-> B C_ A ) ) |
| 25 |
24
|
biimpa |
|- ( ( ( C e. CH /\ C C_ A ) /\ B C_ ( A vH C ) ) -> B C_ A ) |
| 26 |
25
|
expl |
|- ( C e. CH -> ( ( C C_ A /\ B C_ ( A vH C ) ) -> B C_ A ) ) |
| 27 |
26
|
adantl |
|- ( ( B e. CH /\ C e. CH ) -> ( ( C C_ A /\ B C_ ( A vH C ) ) -> B C_ A ) ) |
| 28 |
|
chub2 |
|- ( ( B e. CH /\ C e. CH ) -> B C_ ( C vH B ) ) |
| 29 |
27 28
|
jctird |
|- ( ( B e. CH /\ C e. CH ) -> ( ( C C_ A /\ B C_ ( A vH C ) ) -> ( B C_ A /\ B C_ ( C vH B ) ) ) ) |
| 30 |
20 3 29
|
syl2an |
|- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( ( C C_ A /\ B C_ ( A vH C ) ) -> ( B C_ A /\ B C_ ( C vH B ) ) ) ) |
| 31 |
|
simpl |
|- ( ( B e. HAtoms /\ C e. HAtoms ) -> B e. HAtoms ) |
| 32 |
30 31
|
jctild |
|- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( ( C C_ A /\ B C_ ( A vH C ) ) -> ( B e. HAtoms /\ ( B C_ A /\ B C_ ( C vH B ) ) ) ) ) |
| 33 |
32
|
impl |
|- ( ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ C C_ A ) /\ B C_ ( A vH C ) ) -> ( B e. HAtoms /\ ( B C_ A /\ B C_ ( C vH B ) ) ) ) |
| 34 |
|
sseq1 |
|- ( x = B -> ( x C_ A <-> B C_ A ) ) |
| 35 |
|
oveq2 |
|- ( x = B -> ( C vH x ) = ( C vH B ) ) |
| 36 |
35
|
sseq2d |
|- ( x = B -> ( B C_ ( C vH x ) <-> B C_ ( C vH B ) ) ) |
| 37 |
34 36
|
anbi12d |
|- ( x = B -> ( ( x C_ A /\ B C_ ( C vH x ) ) <-> ( B C_ A /\ B C_ ( C vH B ) ) ) ) |
| 38 |
37
|
rspcev |
|- ( ( B e. HAtoms /\ ( B C_ A /\ B C_ ( C vH B ) ) ) -> E. x e. HAtoms ( x C_ A /\ B C_ ( C vH x ) ) ) |
| 39 |
33 38
|
syl |
|- ( ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ C C_ A ) /\ B C_ ( A vH C ) ) -> E. x e. HAtoms ( x C_ A /\ B C_ ( C vH x ) ) ) |
| 40 |
39
|
adantrl |
|- ( ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ C C_ A ) /\ ( A =/= 0H /\ B C_ ( A vH C ) ) ) -> E. x e. HAtoms ( x C_ A /\ B C_ ( C vH x ) ) ) |
| 41 |
40
|
exp31 |
|- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( C C_ A -> ( ( A =/= 0H /\ B C_ ( A vH C ) ) -> E. x e. HAtoms ( x C_ A /\ B C_ ( C vH x ) ) ) ) ) |
| 42 |
|
simpr |
|- ( ( A =/= 0H /\ B C_ ( A vH C ) ) -> B C_ ( A vH C ) ) |
| 43 |
|
ioran |
|- ( -. ( B = C \/ C C_ A ) <-> ( -. B = C /\ -. C C_ A ) ) |
| 44 |
1
|
atcvat3i |
|- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( ( ( -. B = C /\ -. C C_ A ) /\ B C_ ( A vH C ) ) -> ( A i^i ( B vH C ) ) e. HAtoms ) ) |
| 45 |
3
|
ad2antlr |
|- ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ ( ( -. B = C /\ -. C C_ A ) /\ B C_ ( A vH C ) ) ) -> C e. CH ) |
| 46 |
44
|
imp |
|- ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ ( ( -. B = C /\ -. C C_ A ) /\ B C_ ( A vH C ) ) ) -> ( A i^i ( B vH C ) ) e. HAtoms ) |
| 47 |
|
simpll |
|- ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ ( ( -. B = C /\ -. C C_ A ) /\ B C_ ( A vH C ) ) ) -> B e. HAtoms ) |
| 48 |
45 46 47
|
3jca |
|- ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ ( ( -. B = C /\ -. C C_ A ) /\ B C_ ( A vH C ) ) ) -> ( C e. CH /\ ( A i^i ( B vH C ) ) e. HAtoms /\ B e. HAtoms ) ) |
| 49 |
|
inss2 |
|- ( A i^i ( B vH C ) ) C_ ( B vH C ) |
| 50 |
|
chjcom |
|- ( ( B e. CH /\ C e. CH ) -> ( B vH C ) = ( C vH B ) ) |
| 51 |
20 3 50
|
syl2an |
|- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( B vH C ) = ( C vH B ) ) |
| 52 |
49 51
|
sseqtrid |
|- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( A i^i ( B vH C ) ) C_ ( C vH B ) ) |
| 53 |
52
|
adantr |
|- ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ ( ( -. B = C /\ -. C C_ A ) /\ B C_ ( A vH C ) ) ) -> ( A i^i ( B vH C ) ) C_ ( C vH B ) ) |
| 54 |
|
atnssm0 |
|- ( ( A e. CH /\ C e. HAtoms ) -> ( -. C C_ A <-> ( A i^i C ) = 0H ) ) |
| 55 |
1 54
|
mpan |
|- ( C e. HAtoms -> ( -. C C_ A <-> ( A i^i C ) = 0H ) ) |
| 56 |
55
|
adantl |
|- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( -. C C_ A <-> ( A i^i C ) = 0H ) ) |
| 57 |
|
inss1 |
|- ( A i^i ( B vH C ) ) C_ A |
| 58 |
|
sslin |
|- ( ( A i^i ( B vH C ) ) C_ A -> ( C i^i ( A i^i ( B vH C ) ) ) C_ ( C i^i A ) ) |
| 59 |
57 58
|
ax-mp |
|- ( C i^i ( A i^i ( B vH C ) ) ) C_ ( C i^i A ) |
| 60 |
|
incom |
|- ( C i^i A ) = ( A i^i C ) |
| 61 |
59 60
|
sseqtri |
|- ( C i^i ( A i^i ( B vH C ) ) ) C_ ( A i^i C ) |
| 62 |
|
sseq2 |
|- ( ( A i^i C ) = 0H -> ( ( C i^i ( A i^i ( B vH C ) ) ) C_ ( A i^i C ) <-> ( C i^i ( A i^i ( B vH C ) ) ) C_ 0H ) ) |
| 63 |
61 62
|
mpbii |
|- ( ( A i^i C ) = 0H -> ( C i^i ( A i^i ( B vH C ) ) ) C_ 0H ) |
| 64 |
|
simpr |
|- ( ( B e. CH /\ C e. CH ) -> C e. CH ) |
| 65 |
|
chjcl |
|- ( ( B e. CH /\ C e. CH ) -> ( B vH C ) e. CH ) |
| 66 |
|
chincl |
|- ( ( A e. CH /\ ( B vH C ) e. CH ) -> ( A i^i ( B vH C ) ) e. CH ) |
| 67 |
1 65 66
|
sylancr |
|- ( ( B e. CH /\ C e. CH ) -> ( A i^i ( B vH C ) ) e. CH ) |
| 68 |
|
chincl |
|- ( ( C e. CH /\ ( A i^i ( B vH C ) ) e. CH ) -> ( C i^i ( A i^i ( B vH C ) ) ) e. CH ) |
| 69 |
64 67 68
|
syl2anc |
|- ( ( B e. CH /\ C e. CH ) -> ( C i^i ( A i^i ( B vH C ) ) ) e. CH ) |
| 70 |
20 3 69
|
syl2an |
|- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( C i^i ( A i^i ( B vH C ) ) ) e. CH ) |
| 71 |
|
chle0 |
|- ( ( C i^i ( A i^i ( B vH C ) ) ) e. CH -> ( ( C i^i ( A i^i ( B vH C ) ) ) C_ 0H <-> ( C i^i ( A i^i ( B vH C ) ) ) = 0H ) ) |
| 72 |
70 71
|
syl |
|- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( ( C i^i ( A i^i ( B vH C ) ) ) C_ 0H <-> ( C i^i ( A i^i ( B vH C ) ) ) = 0H ) ) |
| 73 |
63 72
|
imbitrid |
|- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( ( A i^i C ) = 0H -> ( C i^i ( A i^i ( B vH C ) ) ) = 0H ) ) |
| 74 |
56 73
|
sylbid |
|- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( -. C C_ A -> ( C i^i ( A i^i ( B vH C ) ) ) = 0H ) ) |
| 75 |
74
|
imp |
|- ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ -. C C_ A ) -> ( C i^i ( A i^i ( B vH C ) ) ) = 0H ) |
| 76 |
75
|
adantrl |
|- ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ ( -. B = C /\ -. C C_ A ) ) -> ( C i^i ( A i^i ( B vH C ) ) ) = 0H ) |
| 77 |
76
|
adantrr |
|- ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ ( ( -. B = C /\ -. C C_ A ) /\ B C_ ( A vH C ) ) ) -> ( C i^i ( A i^i ( B vH C ) ) ) = 0H ) |
| 78 |
53 77
|
jca |
|- ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ ( ( -. B = C /\ -. C C_ A ) /\ B C_ ( A vH C ) ) ) -> ( ( A i^i ( B vH C ) ) C_ ( C vH B ) /\ ( C i^i ( A i^i ( B vH C ) ) ) = 0H ) ) |
| 79 |
|
atexch |
|- ( ( C e. CH /\ ( A i^i ( B vH C ) ) e. HAtoms /\ B e. HAtoms ) -> ( ( ( A i^i ( B vH C ) ) C_ ( C vH B ) /\ ( C i^i ( A i^i ( B vH C ) ) ) = 0H ) -> B C_ ( C vH ( A i^i ( B vH C ) ) ) ) ) |
| 80 |
48 78 79
|
sylc |
|- ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ ( ( -. B = C /\ -. C C_ A ) /\ B C_ ( A vH C ) ) ) -> B C_ ( C vH ( A i^i ( B vH C ) ) ) ) |
| 81 |
80 57
|
jctil |
|- ( ( ( B e. HAtoms /\ C e. HAtoms ) /\ ( ( -. B = C /\ -. C C_ A ) /\ B C_ ( A vH C ) ) ) -> ( ( A i^i ( B vH C ) ) C_ A /\ B C_ ( C vH ( A i^i ( B vH C ) ) ) ) ) |
| 82 |
81
|
ex |
|- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( ( ( -. B = C /\ -. C C_ A ) /\ B C_ ( A vH C ) ) -> ( ( A i^i ( B vH C ) ) C_ A /\ B C_ ( C vH ( A i^i ( B vH C ) ) ) ) ) ) |
| 83 |
44 82
|
jcad |
|- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( ( ( -. B = C /\ -. C C_ A ) /\ B C_ ( A vH C ) ) -> ( ( A i^i ( B vH C ) ) e. HAtoms /\ ( ( A i^i ( B vH C ) ) C_ A /\ B C_ ( C vH ( A i^i ( B vH C ) ) ) ) ) ) ) |
| 84 |
|
sseq1 |
|- ( x = ( A i^i ( B vH C ) ) -> ( x C_ A <-> ( A i^i ( B vH C ) ) C_ A ) ) |
| 85 |
|
oveq2 |
|- ( x = ( A i^i ( B vH C ) ) -> ( C vH x ) = ( C vH ( A i^i ( B vH C ) ) ) ) |
| 86 |
85
|
sseq2d |
|- ( x = ( A i^i ( B vH C ) ) -> ( B C_ ( C vH x ) <-> B C_ ( C vH ( A i^i ( B vH C ) ) ) ) ) |
| 87 |
84 86
|
anbi12d |
|- ( x = ( A i^i ( B vH C ) ) -> ( ( x C_ A /\ B C_ ( C vH x ) ) <-> ( ( A i^i ( B vH C ) ) C_ A /\ B C_ ( C vH ( A i^i ( B vH C ) ) ) ) ) ) |
| 88 |
87
|
rspcev |
|- ( ( ( A i^i ( B vH C ) ) e. HAtoms /\ ( ( A i^i ( B vH C ) ) C_ A /\ B C_ ( C vH ( A i^i ( B vH C ) ) ) ) ) -> E. x e. HAtoms ( x C_ A /\ B C_ ( C vH x ) ) ) |
| 89 |
83 88
|
syl6 |
|- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( ( ( -. B = C /\ -. C C_ A ) /\ B C_ ( A vH C ) ) -> E. x e. HAtoms ( x C_ A /\ B C_ ( C vH x ) ) ) ) |
| 90 |
89
|
expd |
|- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( ( -. B = C /\ -. C C_ A ) -> ( B C_ ( A vH C ) -> E. x e. HAtoms ( x C_ A /\ B C_ ( C vH x ) ) ) ) ) |
| 91 |
43 90
|
biimtrid |
|- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( -. ( B = C \/ C C_ A ) -> ( B C_ ( A vH C ) -> E. x e. HAtoms ( x C_ A /\ B C_ ( C vH x ) ) ) ) ) |
| 92 |
42 91
|
syl7 |
|- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( -. ( B = C \/ C C_ A ) -> ( ( A =/= 0H /\ B C_ ( A vH C ) ) -> E. x e. HAtoms ( x C_ A /\ B C_ ( C vH x ) ) ) ) ) |
| 93 |
19 41 92
|
ecase3d |
|- ( ( B e. HAtoms /\ C e. HAtoms ) -> ( ( A =/= 0H /\ B C_ ( A vH C ) ) -> E. x e. HAtoms ( x C_ A /\ B C_ ( C vH x ) ) ) ) |