Description: An atom covers zero. ( atcv0 analog.) (Contributed by NM, 4-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | atomcvr0.z | |- .0. = ( 0. ` K ) |
|
| atomcvr0.c | |- C = ( |
||
| atomcvr0.a | |- A = ( Atoms ` K ) |
||
| Assertion | atcvr0 | |- ( ( K e. D /\ P e. A ) -> .0. C P ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atomcvr0.z | |- .0. = ( 0. ` K ) |
|
| 2 | atomcvr0.c | |- C = ( |
|
| 3 | atomcvr0.a | |- A = ( Atoms ` K ) |
|
| 4 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
| 5 | 4 1 2 3 | isat | |- ( K e. D -> ( P e. A <-> ( P e. ( Base ` K ) /\ .0. C P ) ) ) |
| 6 | 5 | simplbda | |- ( ( K e. D /\ P e. A ) -> .0. C P ) |