Metamath Proof Explorer


Theorem atcvr0

Description: An atom covers zero. ( atcv0 analog.) (Contributed by NM, 4-Nov-2011)

Ref Expression
Hypotheses atomcvr0.z
|- .0. = ( 0. ` K )
atomcvr0.c
|- C = ( 
atomcvr0.a
|- A = ( Atoms ` K )
Assertion atcvr0
|- ( ( K e. D /\ P e. A ) -> .0. C P )

Proof

Step Hyp Ref Expression
1 atomcvr0.z
 |-  .0. = ( 0. ` K )
2 atomcvr0.c
 |-  C = ( 
3 atomcvr0.a
 |-  A = ( Atoms ` K )
4 eqid
 |-  ( Base ` K ) = ( Base ` K )
5 4 1 2 3 isat
 |-  ( K e. D -> ( P e. A <-> ( P e. ( Base ` K ) /\ .0. C P ) ) )
6 5 simplbda
 |-  ( ( K e. D /\ P e. A ) -> .0. C P )