Description: An atom covers zero. ( atcv0 analog.) (Contributed by NM, 4-Nov-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | atomcvr0.z | |- .0. = ( 0. ` K ) |
|
atomcvr0.c | |- C = ( |
||
atomcvr0.a | |- A = ( Atoms ` K ) |
||
Assertion | atcvr0 | |- ( ( K e. D /\ P e. A ) -> .0. C P ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | atomcvr0.z | |- .0. = ( 0. ` K ) |
|
2 | atomcvr0.c | |- C = ( |
|
3 | atomcvr0.a | |- A = ( Atoms ` K ) |
|
4 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
5 | 4 1 2 3 | isat | |- ( K e. D -> ( P e. A <-> ( P e. ( Base ` K ) /\ .0. C P ) ) ) |
6 | 5 | simplbda | |- ( ( K e. D /\ P e. A ) -> .0. C P ) |