Step |
Hyp |
Ref |
Expression |
1 |
|
atcvr0eq.j |
|- .\/ = ( join ` K ) |
2 |
|
atcvr0eq.z |
|- .0. = ( 0. ` K ) |
3 |
|
atcvr0eq.c |
|- C = ( |
4 |
|
atcvr0eq.a |
|- A = ( Atoms ` K ) |
5 |
1 3 4
|
atcvr1 |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P =/= Q <-> P C ( P .\/ Q ) ) ) |
6 |
2 3 4
|
atcvr0 |
|- ( ( K e. HL /\ P e. A ) -> .0. C P ) |
7 |
6
|
3adant3 |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> .0. C P ) |
8 |
7
|
biantrurd |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P C ( P .\/ Q ) <-> ( .0. C P /\ P C ( P .\/ Q ) ) ) ) |
9 |
5 8
|
bitrd |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P =/= Q <-> ( .0. C P /\ P C ( P .\/ Q ) ) ) ) |
10 |
|
simp1 |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> K e. HL ) |
11 |
|
hlop |
|- ( K e. HL -> K e. OP ) |
12 |
11
|
3ad2ant1 |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> K e. OP ) |
13 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
14 |
13 2
|
op0cl |
|- ( K e. OP -> .0. e. ( Base ` K ) ) |
15 |
12 14
|
syl |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> .0. e. ( Base ` K ) ) |
16 |
13 4
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
17 |
16
|
3ad2ant2 |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> P e. ( Base ` K ) ) |
18 |
13 1 4
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
19 |
13 3
|
cvrntr |
|- ( ( K e. HL /\ ( .0. e. ( Base ` K ) /\ P e. ( Base ` K ) /\ ( P .\/ Q ) e. ( Base ` K ) ) ) -> ( ( .0. C P /\ P C ( P .\/ Q ) ) -> -. .0. C ( P .\/ Q ) ) ) |
20 |
10 15 17 18 19
|
syl13anc |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( ( .0. C P /\ P C ( P .\/ Q ) ) -> -. .0. C ( P .\/ Q ) ) ) |
21 |
9 20
|
sylbid |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P =/= Q -> -. .0. C ( P .\/ Q ) ) ) |
22 |
21
|
necon4ad |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( .0. C ( P .\/ Q ) -> P = Q ) ) |
23 |
1 4
|
hlatjidm |
|- ( ( K e. HL /\ P e. A ) -> ( P .\/ P ) = P ) |
24 |
23
|
3adant3 |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ P ) = P ) |
25 |
7 24
|
breqtrrd |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> .0. C ( P .\/ P ) ) |
26 |
|
oveq2 |
|- ( P = Q -> ( P .\/ P ) = ( P .\/ Q ) ) |
27 |
26
|
breq2d |
|- ( P = Q -> ( .0. C ( P .\/ P ) <-> .0. C ( P .\/ Q ) ) ) |
28 |
25 27
|
syl5ibcom |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P = Q -> .0. C ( P .\/ Q ) ) ) |
29 |
22 28
|
impbid |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( .0. C ( P .\/ Q ) <-> P = Q ) ) |