| Step | Hyp | Ref | Expression | 
						
							| 1 |  | atcvr0eq.j |  |-  .\/ = ( join ` K ) | 
						
							| 2 |  | atcvr0eq.z |  |-  .0. = ( 0. ` K ) | 
						
							| 3 |  | atcvr0eq.c |  |-  C = (  | 
						
							| 4 |  | atcvr0eq.a |  |-  A = ( Atoms ` K ) | 
						
							| 5 | 1 3 4 | atcvr1 |  |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P =/= Q <-> P C ( P .\/ Q ) ) ) | 
						
							| 6 | 2 3 4 | atcvr0 |  |-  ( ( K e. HL /\ P e. A ) -> .0. C P ) | 
						
							| 7 | 6 | 3adant3 |  |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> .0. C P ) | 
						
							| 8 | 7 | biantrurd |  |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P C ( P .\/ Q ) <-> ( .0. C P /\ P C ( P .\/ Q ) ) ) ) | 
						
							| 9 | 5 8 | bitrd |  |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P =/= Q <-> ( .0. C P /\ P C ( P .\/ Q ) ) ) ) | 
						
							| 10 |  | simp1 |  |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> K e. HL ) | 
						
							| 11 |  | hlop |  |-  ( K e. HL -> K e. OP ) | 
						
							| 12 | 11 | 3ad2ant1 |  |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> K e. OP ) | 
						
							| 13 |  | eqid |  |-  ( Base ` K ) = ( Base ` K ) | 
						
							| 14 | 13 2 | op0cl |  |-  ( K e. OP -> .0. e. ( Base ` K ) ) | 
						
							| 15 | 12 14 | syl |  |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> .0. e. ( Base ` K ) ) | 
						
							| 16 | 13 4 | atbase |  |-  ( P e. A -> P e. ( Base ` K ) ) | 
						
							| 17 | 16 | 3ad2ant2 |  |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> P e. ( Base ` K ) ) | 
						
							| 18 | 13 1 4 | hlatjcl |  |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. ( Base ` K ) ) | 
						
							| 19 | 13 3 | cvrntr |  |-  ( ( K e. HL /\ ( .0. e. ( Base ` K ) /\ P e. ( Base ` K ) /\ ( P .\/ Q ) e. ( Base ` K ) ) ) -> ( ( .0. C P /\ P C ( P .\/ Q ) ) -> -. .0. C ( P .\/ Q ) ) ) | 
						
							| 20 | 10 15 17 18 19 | syl13anc |  |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( ( .0. C P /\ P C ( P .\/ Q ) ) -> -. .0. C ( P .\/ Q ) ) ) | 
						
							| 21 | 9 20 | sylbid |  |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P =/= Q -> -. .0. C ( P .\/ Q ) ) ) | 
						
							| 22 | 21 | necon4ad |  |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( .0. C ( P .\/ Q ) -> P = Q ) ) | 
						
							| 23 | 1 4 | hlatjidm |  |-  ( ( K e. HL /\ P e. A ) -> ( P .\/ P ) = P ) | 
						
							| 24 | 23 | 3adant3 |  |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ P ) = P ) | 
						
							| 25 | 7 24 | breqtrrd |  |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> .0. C ( P .\/ P ) ) | 
						
							| 26 |  | oveq2 |  |-  ( P = Q -> ( P .\/ P ) = ( P .\/ Q ) ) | 
						
							| 27 | 26 | breq2d |  |-  ( P = Q -> ( .0. C ( P .\/ P ) <-> .0. C ( P .\/ Q ) ) ) | 
						
							| 28 | 25 27 | syl5ibcom |  |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P = Q -> .0. C ( P .\/ Q ) ) ) | 
						
							| 29 | 22 28 | impbid |  |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( .0. C ( P .\/ Q ) <-> P = Q ) ) |