Step |
Hyp |
Ref |
Expression |
1 |
|
atcvrj1x.l |
|- .<_ = ( le ` K ) |
2 |
|
atcvrj1x.j |
|- .\/ = ( join ` K ) |
3 |
|
atcvrj1x.c |
|- C = ( |
4 |
|
atcvrj1x.a |
|- A = ( Atoms ` K ) |
5 |
|
simp3l |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= R /\ P .<_ ( Q .\/ R ) ) ) -> P =/= R ) |
6 |
|
hlatl |
|- ( K e. HL -> K e. AtLat ) |
7 |
6
|
3ad2ant1 |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= R /\ P .<_ ( Q .\/ R ) ) ) -> K e. AtLat ) |
8 |
|
simp21 |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= R /\ P .<_ ( Q .\/ R ) ) ) -> P e. A ) |
9 |
|
simp23 |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= R /\ P .<_ ( Q .\/ R ) ) ) -> R e. A ) |
10 |
|
eqid |
|- ( meet ` K ) = ( meet ` K ) |
11 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
12 |
10 11 4
|
atnem0 |
|- ( ( K e. AtLat /\ P e. A /\ R e. A ) -> ( P =/= R <-> ( P ( meet ` K ) R ) = ( 0. ` K ) ) ) |
13 |
7 8 9 12
|
syl3anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= R /\ P .<_ ( Q .\/ R ) ) ) -> ( P =/= R <-> ( P ( meet ` K ) R ) = ( 0. ` K ) ) ) |
14 |
5 13
|
mpbid |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= R /\ P .<_ ( Q .\/ R ) ) ) -> ( P ( meet ` K ) R ) = ( 0. ` K ) ) |
15 |
|
simp1 |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= R /\ P .<_ ( Q .\/ R ) ) ) -> K e. HL ) |
16 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
17 |
16 4
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
18 |
8 17
|
syl |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= R /\ P .<_ ( Q .\/ R ) ) ) -> P e. ( Base ` K ) ) |
19 |
16 2 10 11 3 4
|
cvrp |
|- ( ( K e. HL /\ P e. ( Base ` K ) /\ R e. A ) -> ( ( P ( meet ` K ) R ) = ( 0. ` K ) <-> P C ( P .\/ R ) ) ) |
20 |
15 18 9 19
|
syl3anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= R /\ P .<_ ( Q .\/ R ) ) ) -> ( ( P ( meet ` K ) R ) = ( 0. ` K ) <-> P C ( P .\/ R ) ) ) |
21 |
14 20
|
mpbid |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= R /\ P .<_ ( Q .\/ R ) ) ) -> P C ( P .\/ R ) ) |
22 |
|
simp3r |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= R /\ P .<_ ( Q .\/ R ) ) ) -> P .<_ ( Q .\/ R ) ) |
23 |
1 2 4
|
hlatexchb2 |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= R ) -> ( P .<_ ( Q .\/ R ) <-> ( P .\/ R ) = ( Q .\/ R ) ) ) |
24 |
23
|
3adant3r |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= R /\ P .<_ ( Q .\/ R ) ) ) -> ( P .<_ ( Q .\/ R ) <-> ( P .\/ R ) = ( Q .\/ R ) ) ) |
25 |
22 24
|
mpbid |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= R /\ P .<_ ( Q .\/ R ) ) ) -> ( P .\/ R ) = ( Q .\/ R ) ) |
26 |
21 25
|
breqtrd |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= R /\ P .<_ ( Q .\/ R ) ) ) -> P C ( Q .\/ R ) ) |