Metamath Proof Explorer


Theorem atcvrj2b

Description: Condition for an atom to be covered by the join of two others. (Contributed by NM, 7-Feb-2012)

Ref Expression
Hypotheses atcvrj1x.l
|- .<_ = ( le ` K )
atcvrj1x.j
|- .\/ = ( join ` K )
atcvrj1x.c
|- C = ( 
atcvrj1x.a
|- A = ( Atoms ` K )
Assertion atcvrj2b
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> ( ( Q =/= R /\ P .<_ ( Q .\/ R ) ) <-> P C ( Q .\/ R ) ) )

Proof

Step Hyp Ref Expression
1 atcvrj1x.l
 |-  .<_ = ( le ` K )
2 atcvrj1x.j
 |-  .\/ = ( join ` K )
3 atcvrj1x.c
 |-  C = ( 
4 atcvrj1x.a
 |-  A = ( Atoms ` K )
5 simpl3l
 |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( Q =/= R /\ P .<_ ( Q .\/ R ) ) ) /\ P = R ) -> Q =/= R )
6 5 necomd
 |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( Q =/= R /\ P .<_ ( Q .\/ R ) ) ) /\ P = R ) -> R =/= Q )
7 simpl1
 |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( Q =/= R /\ P .<_ ( Q .\/ R ) ) ) /\ P = R ) -> K e. HL )
8 simpl23
 |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( Q =/= R /\ P .<_ ( Q .\/ R ) ) ) /\ P = R ) -> R e. A )
9 simpl22
 |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( Q =/= R /\ P .<_ ( Q .\/ R ) ) ) /\ P = R ) -> Q e. A )
10 2 3 4 atcvr2
 |-  ( ( K e. HL /\ R e. A /\ Q e. A ) -> ( R =/= Q <-> R C ( Q .\/ R ) ) )
11 7 8 9 10 syl3anc
 |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( Q =/= R /\ P .<_ ( Q .\/ R ) ) ) /\ P = R ) -> ( R =/= Q <-> R C ( Q .\/ R ) ) )
12 6 11 mpbid
 |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( Q =/= R /\ P .<_ ( Q .\/ R ) ) ) /\ P = R ) -> R C ( Q .\/ R ) )
13 breq1
 |-  ( P = R -> ( P C ( Q .\/ R ) <-> R C ( Q .\/ R ) ) )
14 13 adantl
 |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( Q =/= R /\ P .<_ ( Q .\/ R ) ) ) /\ P = R ) -> ( P C ( Q .\/ R ) <-> R C ( Q .\/ R ) ) )
15 12 14 mpbird
 |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( Q =/= R /\ P .<_ ( Q .\/ R ) ) ) /\ P = R ) -> P C ( Q .\/ R ) )
16 simpl1
 |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( Q =/= R /\ P .<_ ( Q .\/ R ) ) ) /\ P =/= R ) -> K e. HL )
17 simpl2
 |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( Q =/= R /\ P .<_ ( Q .\/ R ) ) ) /\ P =/= R ) -> ( P e. A /\ Q e. A /\ R e. A ) )
18 simpr
 |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( Q =/= R /\ P .<_ ( Q .\/ R ) ) ) /\ P =/= R ) -> P =/= R )
19 simpl3r
 |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( Q =/= R /\ P .<_ ( Q .\/ R ) ) ) /\ P =/= R ) -> P .<_ ( Q .\/ R ) )
20 1 2 3 4 atcvrj1
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= R /\ P .<_ ( Q .\/ R ) ) ) -> P C ( Q .\/ R ) )
21 16 17 18 19 20 syl112anc
 |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( Q =/= R /\ P .<_ ( Q .\/ R ) ) ) /\ P =/= R ) -> P C ( Q .\/ R ) )
22 15 21 pm2.61dane
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( Q =/= R /\ P .<_ ( Q .\/ R ) ) ) -> P C ( Q .\/ R ) )
23 22 3expia
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> ( ( Q =/= R /\ P .<_ ( Q .\/ R ) ) -> P C ( Q .\/ R ) ) )
24 hlatl
 |-  ( K e. HL -> K e. AtLat )
25 24 ad2antrr
 |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ P C ( Q .\/ R ) ) -> K e. AtLat )
26 simplr1
 |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ P C ( Q .\/ R ) ) -> P e. A )
27 eqid
 |-  ( 0. ` K ) = ( 0. ` K )
28 27 4 atn0
 |-  ( ( K e. AtLat /\ P e. A ) -> P =/= ( 0. ` K ) )
29 25 26 28 syl2anc
 |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ P C ( Q .\/ R ) ) -> P =/= ( 0. ` K ) )
30 simpll
 |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ P C ( Q .\/ R ) ) -> K e. HL )
31 eqid
 |-  ( Base ` K ) = ( Base ` K )
32 31 4 atbase
 |-  ( P e. A -> P e. ( Base ` K ) )
33 26 32 syl
 |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ P C ( Q .\/ R ) ) -> P e. ( Base ` K ) )
34 simplr2
 |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ P C ( Q .\/ R ) ) -> Q e. A )
35 simplr3
 |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ P C ( Q .\/ R ) ) -> R e. A )
36 simpr
 |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ P C ( Q .\/ R ) ) -> P C ( Q .\/ R ) )
37 31 2 27 3 4 atcvrj0
 |-  ( ( K e. HL /\ ( P e. ( Base ` K ) /\ Q e. A /\ R e. A ) /\ P C ( Q .\/ R ) ) -> ( P = ( 0. ` K ) <-> Q = R ) )
38 30 33 34 35 36 37 syl131anc
 |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ P C ( Q .\/ R ) ) -> ( P = ( 0. ` K ) <-> Q = R ) )
39 38 necon3bid
 |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ P C ( Q .\/ R ) ) -> ( P =/= ( 0. ` K ) <-> Q =/= R ) )
40 29 39 mpbid
 |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ P C ( Q .\/ R ) ) -> Q =/= R )
41 hllat
 |-  ( K e. HL -> K e. Lat )
42 41 ad2antrr
 |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ P C ( Q .\/ R ) ) -> K e. Lat )
43 31 4 atbase
 |-  ( Q e. A -> Q e. ( Base ` K ) )
44 34 43 syl
 |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ P C ( Q .\/ R ) ) -> Q e. ( Base ` K ) )
45 31 4 atbase
 |-  ( R e. A -> R e. ( Base ` K ) )
46 35 45 syl
 |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ P C ( Q .\/ R ) ) -> R e. ( Base ` K ) )
47 31 2 latjcl
 |-  ( ( K e. Lat /\ Q e. ( Base ` K ) /\ R e. ( Base ` K ) ) -> ( Q .\/ R ) e. ( Base ` K ) )
48 42 44 46 47 syl3anc
 |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ P C ( Q .\/ R ) ) -> ( Q .\/ R ) e. ( Base ` K ) )
49 30 33 48 3jca
 |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ P C ( Q .\/ R ) ) -> ( K e. HL /\ P e. ( Base ` K ) /\ ( Q .\/ R ) e. ( Base ` K ) ) )
50 31 1 3 cvrle
 |-  ( ( ( K e. HL /\ P e. ( Base ` K ) /\ ( Q .\/ R ) e. ( Base ` K ) ) /\ P C ( Q .\/ R ) ) -> P .<_ ( Q .\/ R ) )
51 49 50 sylancom
 |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ P C ( Q .\/ R ) ) -> P .<_ ( Q .\/ R ) )
52 40 51 jca
 |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ P C ( Q .\/ R ) ) -> ( Q =/= R /\ P .<_ ( Q .\/ R ) ) )
53 52 ex
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> ( P C ( Q .\/ R ) -> ( Q =/= R /\ P .<_ ( Q .\/ R ) ) ) )
54 23 53 impbid
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> ( ( Q =/= R /\ P .<_ ( Q .\/ R ) ) <-> P C ( Q .\/ R ) ) )