Step |
Hyp |
Ref |
Expression |
1 |
|
atcvrj1x.l |
|- .<_ = ( le ` K ) |
2 |
|
atcvrj1x.j |
|- .\/ = ( join ` K ) |
3 |
|
atcvrj1x.c |
|- C = ( |
4 |
|
atcvrj1x.a |
|- A = ( Atoms ` K ) |
5 |
|
simpl3l |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( Q =/= R /\ P .<_ ( Q .\/ R ) ) ) /\ P = R ) -> Q =/= R ) |
6 |
5
|
necomd |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( Q =/= R /\ P .<_ ( Q .\/ R ) ) ) /\ P = R ) -> R =/= Q ) |
7 |
|
simpl1 |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( Q =/= R /\ P .<_ ( Q .\/ R ) ) ) /\ P = R ) -> K e. HL ) |
8 |
|
simpl23 |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( Q =/= R /\ P .<_ ( Q .\/ R ) ) ) /\ P = R ) -> R e. A ) |
9 |
|
simpl22 |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( Q =/= R /\ P .<_ ( Q .\/ R ) ) ) /\ P = R ) -> Q e. A ) |
10 |
2 3 4
|
atcvr2 |
|- ( ( K e. HL /\ R e. A /\ Q e. A ) -> ( R =/= Q <-> R C ( Q .\/ R ) ) ) |
11 |
7 8 9 10
|
syl3anc |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( Q =/= R /\ P .<_ ( Q .\/ R ) ) ) /\ P = R ) -> ( R =/= Q <-> R C ( Q .\/ R ) ) ) |
12 |
6 11
|
mpbid |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( Q =/= R /\ P .<_ ( Q .\/ R ) ) ) /\ P = R ) -> R C ( Q .\/ R ) ) |
13 |
|
breq1 |
|- ( P = R -> ( P C ( Q .\/ R ) <-> R C ( Q .\/ R ) ) ) |
14 |
13
|
adantl |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( Q =/= R /\ P .<_ ( Q .\/ R ) ) ) /\ P = R ) -> ( P C ( Q .\/ R ) <-> R C ( Q .\/ R ) ) ) |
15 |
12 14
|
mpbird |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( Q =/= R /\ P .<_ ( Q .\/ R ) ) ) /\ P = R ) -> P C ( Q .\/ R ) ) |
16 |
|
simpl1 |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( Q =/= R /\ P .<_ ( Q .\/ R ) ) ) /\ P =/= R ) -> K e. HL ) |
17 |
|
simpl2 |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( Q =/= R /\ P .<_ ( Q .\/ R ) ) ) /\ P =/= R ) -> ( P e. A /\ Q e. A /\ R e. A ) ) |
18 |
|
simpr |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( Q =/= R /\ P .<_ ( Q .\/ R ) ) ) /\ P =/= R ) -> P =/= R ) |
19 |
|
simpl3r |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( Q =/= R /\ P .<_ ( Q .\/ R ) ) ) /\ P =/= R ) -> P .<_ ( Q .\/ R ) ) |
20 |
1 2 3 4
|
atcvrj1 |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= R /\ P .<_ ( Q .\/ R ) ) ) -> P C ( Q .\/ R ) ) |
21 |
16 17 18 19 20
|
syl112anc |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( Q =/= R /\ P .<_ ( Q .\/ R ) ) ) /\ P =/= R ) -> P C ( Q .\/ R ) ) |
22 |
15 21
|
pm2.61dane |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( Q =/= R /\ P .<_ ( Q .\/ R ) ) ) -> P C ( Q .\/ R ) ) |
23 |
22
|
3expia |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> ( ( Q =/= R /\ P .<_ ( Q .\/ R ) ) -> P C ( Q .\/ R ) ) ) |
24 |
|
hlatl |
|- ( K e. HL -> K e. AtLat ) |
25 |
24
|
ad2antrr |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ P C ( Q .\/ R ) ) -> K e. AtLat ) |
26 |
|
simplr1 |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ P C ( Q .\/ R ) ) -> P e. A ) |
27 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
28 |
27 4
|
atn0 |
|- ( ( K e. AtLat /\ P e. A ) -> P =/= ( 0. ` K ) ) |
29 |
25 26 28
|
syl2anc |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ P C ( Q .\/ R ) ) -> P =/= ( 0. ` K ) ) |
30 |
|
simpll |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ P C ( Q .\/ R ) ) -> K e. HL ) |
31 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
32 |
31 4
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
33 |
26 32
|
syl |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ P C ( Q .\/ R ) ) -> P e. ( Base ` K ) ) |
34 |
|
simplr2 |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ P C ( Q .\/ R ) ) -> Q e. A ) |
35 |
|
simplr3 |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ P C ( Q .\/ R ) ) -> R e. A ) |
36 |
|
simpr |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ P C ( Q .\/ R ) ) -> P C ( Q .\/ R ) ) |
37 |
31 2 27 3 4
|
atcvrj0 |
|- ( ( K e. HL /\ ( P e. ( Base ` K ) /\ Q e. A /\ R e. A ) /\ P C ( Q .\/ R ) ) -> ( P = ( 0. ` K ) <-> Q = R ) ) |
38 |
30 33 34 35 36 37
|
syl131anc |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ P C ( Q .\/ R ) ) -> ( P = ( 0. ` K ) <-> Q = R ) ) |
39 |
38
|
necon3bid |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ P C ( Q .\/ R ) ) -> ( P =/= ( 0. ` K ) <-> Q =/= R ) ) |
40 |
29 39
|
mpbid |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ P C ( Q .\/ R ) ) -> Q =/= R ) |
41 |
|
hllat |
|- ( K e. HL -> K e. Lat ) |
42 |
41
|
ad2antrr |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ P C ( Q .\/ R ) ) -> K e. Lat ) |
43 |
31 4
|
atbase |
|- ( Q e. A -> Q e. ( Base ` K ) ) |
44 |
34 43
|
syl |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ P C ( Q .\/ R ) ) -> Q e. ( Base ` K ) ) |
45 |
31 4
|
atbase |
|- ( R e. A -> R e. ( Base ` K ) ) |
46 |
35 45
|
syl |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ P C ( Q .\/ R ) ) -> R e. ( Base ` K ) ) |
47 |
31 2
|
latjcl |
|- ( ( K e. Lat /\ Q e. ( Base ` K ) /\ R e. ( Base ` K ) ) -> ( Q .\/ R ) e. ( Base ` K ) ) |
48 |
42 44 46 47
|
syl3anc |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ P C ( Q .\/ R ) ) -> ( Q .\/ R ) e. ( Base ` K ) ) |
49 |
30 33 48
|
3jca |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ P C ( Q .\/ R ) ) -> ( K e. HL /\ P e. ( Base ` K ) /\ ( Q .\/ R ) e. ( Base ` K ) ) ) |
50 |
31 1 3
|
cvrle |
|- ( ( ( K e. HL /\ P e. ( Base ` K ) /\ ( Q .\/ R ) e. ( Base ` K ) ) /\ P C ( Q .\/ R ) ) -> P .<_ ( Q .\/ R ) ) |
51 |
49 50
|
sylancom |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ P C ( Q .\/ R ) ) -> P .<_ ( Q .\/ R ) ) |
52 |
40 51
|
jca |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ P C ( Q .\/ R ) ) -> ( Q =/= R /\ P .<_ ( Q .\/ R ) ) ) |
53 |
52
|
ex |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> ( P C ( Q .\/ R ) -> ( Q =/= R /\ P .<_ ( Q .\/ R ) ) ) ) |
54 |
23 53
|
impbid |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> ( ( Q =/= R /\ P .<_ ( Q .\/ R ) ) <-> P C ( Q .\/ R ) ) ) |