Step |
Hyp |
Ref |
Expression |
1 |
|
atcvrlln2.l |
|- .<_ = ( le ` K ) |
2 |
|
atcvrlln2.c |
|- C = ( |
3 |
|
atcvrlln2.a |
|- A = ( Atoms ` K ) |
4 |
|
atcvrlln2.n |
|- N = ( LLines ` K ) |
5 |
|
simpl3 |
|- ( ( ( K e. HL /\ P e. A /\ X e. N ) /\ P .<_ X ) -> X e. N ) |
6 |
|
simpl1 |
|- ( ( ( K e. HL /\ P e. A /\ X e. N ) /\ P .<_ X ) -> K e. HL ) |
7 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
8 |
7 4
|
llnbase |
|- ( X e. N -> X e. ( Base ` K ) ) |
9 |
5 8
|
syl |
|- ( ( ( K e. HL /\ P e. A /\ X e. N ) /\ P .<_ X ) -> X e. ( Base ` K ) ) |
10 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
11 |
7 10 3 4
|
islln3 |
|- ( ( K e. HL /\ X e. ( Base ` K ) ) -> ( X e. N <-> E. q e. A E. r e. A ( q =/= r /\ X = ( q ( join ` K ) r ) ) ) ) |
12 |
6 9 11
|
syl2anc |
|- ( ( ( K e. HL /\ P e. A /\ X e. N ) /\ P .<_ X ) -> ( X e. N <-> E. q e. A E. r e. A ( q =/= r /\ X = ( q ( join ` K ) r ) ) ) ) |
13 |
5 12
|
mpbid |
|- ( ( ( K e. HL /\ P e. A /\ X e. N ) /\ P .<_ X ) -> E. q e. A E. r e. A ( q =/= r /\ X = ( q ( join ` K ) r ) ) ) |
14 |
|
simp1l1 |
|- ( ( ( ( K e. HL /\ P e. A /\ X e. N ) /\ P .<_ X ) /\ ( q e. A /\ r e. A ) /\ ( q =/= r /\ X = ( q ( join ` K ) r ) ) ) -> K e. HL ) |
15 |
|
simp1l2 |
|- ( ( ( ( K e. HL /\ P e. A /\ X e. N ) /\ P .<_ X ) /\ ( q e. A /\ r e. A ) /\ ( q =/= r /\ X = ( q ( join ` K ) r ) ) ) -> P e. A ) |
16 |
|
simp2l |
|- ( ( ( ( K e. HL /\ P e. A /\ X e. N ) /\ P .<_ X ) /\ ( q e. A /\ r e. A ) /\ ( q =/= r /\ X = ( q ( join ` K ) r ) ) ) -> q e. A ) |
17 |
|
simp2r |
|- ( ( ( ( K e. HL /\ P e. A /\ X e. N ) /\ P .<_ X ) /\ ( q e. A /\ r e. A ) /\ ( q =/= r /\ X = ( q ( join ` K ) r ) ) ) -> r e. A ) |
18 |
|
simp3l |
|- ( ( ( ( K e. HL /\ P e. A /\ X e. N ) /\ P .<_ X ) /\ ( q e. A /\ r e. A ) /\ ( q =/= r /\ X = ( q ( join ` K ) r ) ) ) -> q =/= r ) |
19 |
|
simp1r |
|- ( ( ( ( K e. HL /\ P e. A /\ X e. N ) /\ P .<_ X ) /\ ( q e. A /\ r e. A ) /\ ( q =/= r /\ X = ( q ( join ` K ) r ) ) ) -> P .<_ X ) |
20 |
|
simp3r |
|- ( ( ( ( K e. HL /\ P e. A /\ X e. N ) /\ P .<_ X ) /\ ( q e. A /\ r e. A ) /\ ( q =/= r /\ X = ( q ( join ` K ) r ) ) ) -> X = ( q ( join ` K ) r ) ) |
21 |
19 20
|
breqtrd |
|- ( ( ( ( K e. HL /\ P e. A /\ X e. N ) /\ P .<_ X ) /\ ( q e. A /\ r e. A ) /\ ( q =/= r /\ X = ( q ( join ` K ) r ) ) ) -> P .<_ ( q ( join ` K ) r ) ) |
22 |
1 10 2 3
|
atcvrj2 |
|- ( ( K e. HL /\ ( P e. A /\ q e. A /\ r e. A ) /\ ( q =/= r /\ P .<_ ( q ( join ` K ) r ) ) ) -> P C ( q ( join ` K ) r ) ) |
23 |
14 15 16 17 18 21 22
|
syl132anc |
|- ( ( ( ( K e. HL /\ P e. A /\ X e. N ) /\ P .<_ X ) /\ ( q e. A /\ r e. A ) /\ ( q =/= r /\ X = ( q ( join ` K ) r ) ) ) -> P C ( q ( join ` K ) r ) ) |
24 |
23 20
|
breqtrrd |
|- ( ( ( ( K e. HL /\ P e. A /\ X e. N ) /\ P .<_ X ) /\ ( q e. A /\ r e. A ) /\ ( q =/= r /\ X = ( q ( join ` K ) r ) ) ) -> P C X ) |
25 |
24
|
3exp |
|- ( ( ( K e. HL /\ P e. A /\ X e. N ) /\ P .<_ X ) -> ( ( q e. A /\ r e. A ) -> ( ( q =/= r /\ X = ( q ( join ` K ) r ) ) -> P C X ) ) ) |
26 |
25
|
rexlimdvv |
|- ( ( ( K e. HL /\ P e. A /\ X e. N ) /\ P .<_ X ) -> ( E. q e. A E. r e. A ( q =/= r /\ X = ( q ( join ` K ) r ) ) -> P C X ) ) |
27 |
13 26
|
mpd |
|- ( ( ( K e. HL /\ P e. A /\ X e. N ) /\ P .<_ X ) -> P C X ) |