Metamath Proof Explorer


Theorem atcvrlln2

Description: An atom under a line is covered by it. (Contributed by NM, 2-Jul-2012)

Ref Expression
Hypotheses atcvrlln2.l
|- .<_ = ( le ` K )
atcvrlln2.c
|- C = ( 
atcvrlln2.a
|- A = ( Atoms ` K )
atcvrlln2.n
|- N = ( LLines ` K )
Assertion atcvrlln2
|- ( ( ( K e. HL /\ P e. A /\ X e. N ) /\ P .<_ X ) -> P C X )

Proof

Step Hyp Ref Expression
1 atcvrlln2.l
 |-  .<_ = ( le ` K )
2 atcvrlln2.c
 |-  C = ( 
3 atcvrlln2.a
 |-  A = ( Atoms ` K )
4 atcvrlln2.n
 |-  N = ( LLines ` K )
5 simpl3
 |-  ( ( ( K e. HL /\ P e. A /\ X e. N ) /\ P .<_ X ) -> X e. N )
6 simpl1
 |-  ( ( ( K e. HL /\ P e. A /\ X e. N ) /\ P .<_ X ) -> K e. HL )
7 eqid
 |-  ( Base ` K ) = ( Base ` K )
8 7 4 llnbase
 |-  ( X e. N -> X e. ( Base ` K ) )
9 5 8 syl
 |-  ( ( ( K e. HL /\ P e. A /\ X e. N ) /\ P .<_ X ) -> X e. ( Base ` K ) )
10 eqid
 |-  ( join ` K ) = ( join ` K )
11 7 10 3 4 islln3
 |-  ( ( K e. HL /\ X e. ( Base ` K ) ) -> ( X e. N <-> E. q e. A E. r e. A ( q =/= r /\ X = ( q ( join ` K ) r ) ) ) )
12 6 9 11 syl2anc
 |-  ( ( ( K e. HL /\ P e. A /\ X e. N ) /\ P .<_ X ) -> ( X e. N <-> E. q e. A E. r e. A ( q =/= r /\ X = ( q ( join ` K ) r ) ) ) )
13 5 12 mpbid
 |-  ( ( ( K e. HL /\ P e. A /\ X e. N ) /\ P .<_ X ) -> E. q e. A E. r e. A ( q =/= r /\ X = ( q ( join ` K ) r ) ) )
14 simp1l1
 |-  ( ( ( ( K e. HL /\ P e. A /\ X e. N ) /\ P .<_ X ) /\ ( q e. A /\ r e. A ) /\ ( q =/= r /\ X = ( q ( join ` K ) r ) ) ) -> K e. HL )
15 simp1l2
 |-  ( ( ( ( K e. HL /\ P e. A /\ X e. N ) /\ P .<_ X ) /\ ( q e. A /\ r e. A ) /\ ( q =/= r /\ X = ( q ( join ` K ) r ) ) ) -> P e. A )
16 simp2l
 |-  ( ( ( ( K e. HL /\ P e. A /\ X e. N ) /\ P .<_ X ) /\ ( q e. A /\ r e. A ) /\ ( q =/= r /\ X = ( q ( join ` K ) r ) ) ) -> q e. A )
17 simp2r
 |-  ( ( ( ( K e. HL /\ P e. A /\ X e. N ) /\ P .<_ X ) /\ ( q e. A /\ r e. A ) /\ ( q =/= r /\ X = ( q ( join ` K ) r ) ) ) -> r e. A )
18 simp3l
 |-  ( ( ( ( K e. HL /\ P e. A /\ X e. N ) /\ P .<_ X ) /\ ( q e. A /\ r e. A ) /\ ( q =/= r /\ X = ( q ( join ` K ) r ) ) ) -> q =/= r )
19 simp1r
 |-  ( ( ( ( K e. HL /\ P e. A /\ X e. N ) /\ P .<_ X ) /\ ( q e. A /\ r e. A ) /\ ( q =/= r /\ X = ( q ( join ` K ) r ) ) ) -> P .<_ X )
20 simp3r
 |-  ( ( ( ( K e. HL /\ P e. A /\ X e. N ) /\ P .<_ X ) /\ ( q e. A /\ r e. A ) /\ ( q =/= r /\ X = ( q ( join ` K ) r ) ) ) -> X = ( q ( join ` K ) r ) )
21 19 20 breqtrd
 |-  ( ( ( ( K e. HL /\ P e. A /\ X e. N ) /\ P .<_ X ) /\ ( q e. A /\ r e. A ) /\ ( q =/= r /\ X = ( q ( join ` K ) r ) ) ) -> P .<_ ( q ( join ` K ) r ) )
22 1 10 2 3 atcvrj2
 |-  ( ( K e. HL /\ ( P e. A /\ q e. A /\ r e. A ) /\ ( q =/= r /\ P .<_ ( q ( join ` K ) r ) ) ) -> P C ( q ( join ` K ) r ) )
23 14 15 16 17 18 21 22 syl132anc
 |-  ( ( ( ( K e. HL /\ P e. A /\ X e. N ) /\ P .<_ X ) /\ ( q e. A /\ r e. A ) /\ ( q =/= r /\ X = ( q ( join ` K ) r ) ) ) -> P C ( q ( join ` K ) r ) )
24 23 20 breqtrrd
 |-  ( ( ( ( K e. HL /\ P e. A /\ X e. N ) /\ P .<_ X ) /\ ( q e. A /\ r e. A ) /\ ( q =/= r /\ X = ( q ( join ` K ) r ) ) ) -> P C X )
25 24 3exp
 |-  ( ( ( K e. HL /\ P e. A /\ X e. N ) /\ P .<_ X ) -> ( ( q e. A /\ r e. A ) -> ( ( q =/= r /\ X = ( q ( join ` K ) r ) ) -> P C X ) ) )
26 25 rexlimdvv
 |-  ( ( ( K e. HL /\ P e. A /\ X e. N ) /\ P .<_ X ) -> ( E. q e. A E. r e. A ( q =/= r /\ X = ( q ( join ` K ) r ) ) -> P C X ) )
27 13 26 mpd
 |-  ( ( ( K e. HL /\ P e. A /\ X e. N ) /\ P .<_ X ) -> P C X )