| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvp |
|- ( ( B e. CH /\ A e. HAtoms ) -> ( ( B i^i A ) = 0H <-> B |
| 2 |
|
atelch |
|- ( A e. HAtoms -> A e. CH ) |
| 3 |
|
chjcom |
|- ( ( B e. CH /\ A e. CH ) -> ( B vH A ) = ( A vH B ) ) |
| 4 |
2 3
|
sylan2 |
|- ( ( B e. CH /\ A e. HAtoms ) -> ( B vH A ) = ( A vH B ) ) |
| 5 |
4
|
breq2d |
|- ( ( B e. CH /\ A e. HAtoms ) -> ( B B |
| 6 |
1 5
|
bitrd |
|- ( ( B e. CH /\ A e. HAtoms ) -> ( ( B i^i A ) = 0H <-> B |
| 7 |
6
|
ancoms |
|- ( ( A e. HAtoms /\ B e. CH ) -> ( ( B i^i A ) = 0H <-> B |
| 8 |
|
cvdmd |
|- ( ( A e. CH /\ B e. CH /\ B A MH* B ) |
| 9 |
8
|
3expia |
|- ( ( A e. CH /\ B e. CH ) -> ( B A MH* B ) ) |
| 10 |
2 9
|
sylan |
|- ( ( A e. HAtoms /\ B e. CH ) -> ( B A MH* B ) ) |
| 11 |
7 10
|
sylbid |
|- ( ( A e. HAtoms /\ B e. CH ) -> ( ( B i^i A ) = 0H -> A MH* B ) ) |
| 12 |
|
atnssm0 |
|- ( ( B e. CH /\ A e. HAtoms ) -> ( -. A C_ B <-> ( B i^i A ) = 0H ) ) |
| 13 |
12
|
ancoms |
|- ( ( A e. HAtoms /\ B e. CH ) -> ( -. A C_ B <-> ( B i^i A ) = 0H ) ) |
| 14 |
13
|
con1bid |
|- ( ( A e. HAtoms /\ B e. CH ) -> ( -. ( B i^i A ) = 0H <-> A C_ B ) ) |
| 15 |
|
ssdmd1 |
|- ( ( A e. CH /\ B e. CH /\ A C_ B ) -> A MH* B ) |
| 16 |
15
|
3expia |
|- ( ( A e. CH /\ B e. CH ) -> ( A C_ B -> A MH* B ) ) |
| 17 |
2 16
|
sylan |
|- ( ( A e. HAtoms /\ B e. CH ) -> ( A C_ B -> A MH* B ) ) |
| 18 |
14 17
|
sylbid |
|- ( ( A e. HAtoms /\ B e. CH ) -> ( -. ( B i^i A ) = 0H -> A MH* B ) ) |
| 19 |
11 18
|
pm2.61d |
|- ( ( A e. HAtoms /\ B e. CH ) -> A MH* B ) |