| Step |
Hyp |
Ref |
Expression |
| 1 |
|
atelch |
|- ( C e. HAtoms -> C e. CH ) |
| 2 |
|
chub2 |
|- ( ( C e. CH /\ A e. CH ) -> C C_ ( A vH C ) ) |
| 3 |
2
|
ancoms |
|- ( ( A e. CH /\ C e. CH ) -> C C_ ( A vH C ) ) |
| 4 |
1 3
|
sylan2 |
|- ( ( A e. CH /\ C e. HAtoms ) -> C C_ ( A vH C ) ) |
| 5 |
4
|
3adant2 |
|- ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) -> C C_ ( A vH C ) ) |
| 6 |
5
|
adantr |
|- ( ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) /\ ( B C_ ( A vH C ) /\ ( A i^i B ) = 0H ) ) -> C C_ ( A vH C ) ) |
| 7 |
|
cvp |
|- ( ( A e. CH /\ B e. HAtoms ) -> ( ( A i^i B ) = 0H <-> A |
| 8 |
|
atelch |
|- ( B e. HAtoms -> B e. CH ) |
| 9 |
|
chjcl |
|- ( ( A e. CH /\ B e. CH ) -> ( A vH B ) e. CH ) |
| 10 |
8 9
|
sylan2 |
|- ( ( A e. CH /\ B e. HAtoms ) -> ( A vH B ) e. CH ) |
| 11 |
|
cvpss |
|- ( ( A e. CH /\ ( A vH B ) e. CH ) -> ( A A C. ( A vH B ) ) ) |
| 12 |
10 11
|
syldan |
|- ( ( A e. CH /\ B e. HAtoms ) -> ( A A C. ( A vH B ) ) ) |
| 13 |
7 12
|
sylbid |
|- ( ( A e. CH /\ B e. HAtoms ) -> ( ( A i^i B ) = 0H -> A C. ( A vH B ) ) ) |
| 14 |
13
|
3adant3 |
|- ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) -> ( ( A i^i B ) = 0H -> A C. ( A vH B ) ) ) |
| 15 |
14
|
adantld |
|- ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) -> ( ( B C_ ( A vH C ) /\ ( A i^i B ) = 0H ) -> A C. ( A vH B ) ) ) |
| 16 |
|
id |
|- ( A e. CH -> A e. CH ) |
| 17 |
|
chub1 |
|- ( ( A e. CH /\ C e. CH ) -> A C_ ( A vH C ) ) |
| 18 |
17
|
3adant2 |
|- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> A C_ ( A vH C ) ) |
| 19 |
18
|
a1d |
|- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( B C_ ( A vH C ) -> A C_ ( A vH C ) ) ) |
| 20 |
19
|
ancrd |
|- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( B C_ ( A vH C ) -> ( A C_ ( A vH C ) /\ B C_ ( A vH C ) ) ) ) |
| 21 |
|
chjcl |
|- ( ( A e. CH /\ C e. CH ) -> ( A vH C ) e. CH ) |
| 22 |
21
|
3adant2 |
|- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( A vH C ) e. CH ) |
| 23 |
|
chlub |
|- ( ( A e. CH /\ B e. CH /\ ( A vH C ) e. CH ) -> ( ( A C_ ( A vH C ) /\ B C_ ( A vH C ) ) <-> ( A vH B ) C_ ( A vH C ) ) ) |
| 24 |
22 23
|
syld3an3 |
|- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( ( A C_ ( A vH C ) /\ B C_ ( A vH C ) ) <-> ( A vH B ) C_ ( A vH C ) ) ) |
| 25 |
20 24
|
sylibd |
|- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( B C_ ( A vH C ) -> ( A vH B ) C_ ( A vH C ) ) ) |
| 26 |
16 8 1 25
|
syl3an |
|- ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) -> ( B C_ ( A vH C ) -> ( A vH B ) C_ ( A vH C ) ) ) |
| 27 |
26
|
adantrd |
|- ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) -> ( ( B C_ ( A vH C ) /\ ( A i^i B ) = 0H ) -> ( A vH B ) C_ ( A vH C ) ) ) |
| 28 |
15 27
|
jcad |
|- ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) -> ( ( B C_ ( A vH C ) /\ ( A i^i B ) = 0H ) -> ( A C. ( A vH B ) /\ ( A vH B ) C_ ( A vH C ) ) ) ) |
| 29 |
28
|
imp |
|- ( ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) /\ ( B C_ ( A vH C ) /\ ( A i^i B ) = 0H ) ) -> ( A C. ( A vH B ) /\ ( A vH B ) C_ ( A vH C ) ) ) |
| 30 |
|
simp1 |
|- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> A e. CH ) |
| 31 |
9
|
3adant3 |
|- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( A vH B ) e. CH ) |
| 32 |
30 22 31
|
3jca |
|- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( A e. CH /\ ( A vH C ) e. CH /\ ( A vH B ) e. CH ) ) |
| 33 |
16 8 1 32
|
syl3an |
|- ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) -> ( A e. CH /\ ( A vH C ) e. CH /\ ( A vH B ) e. CH ) ) |
| 34 |
14 26
|
anim12d |
|- ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) -> ( ( ( A i^i B ) = 0H /\ B C_ ( A vH C ) ) -> ( A C. ( A vH B ) /\ ( A vH B ) C_ ( A vH C ) ) ) ) |
| 35 |
34
|
ancomsd |
|- ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) -> ( ( B C_ ( A vH C ) /\ ( A i^i B ) = 0H ) -> ( A C. ( A vH B ) /\ ( A vH B ) C_ ( A vH C ) ) ) ) |
| 36 |
|
psssstr |
|- ( ( A C. ( A vH B ) /\ ( A vH B ) C_ ( A vH C ) ) -> A C. ( A vH C ) ) |
| 37 |
35 36
|
syl6 |
|- ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) -> ( ( B C_ ( A vH C ) /\ ( A i^i B ) = 0H ) -> A C. ( A vH C ) ) ) |
| 38 |
|
chcv2 |
|- ( ( A e. CH /\ C e. HAtoms ) -> ( A C. ( A vH C ) <-> A |
| 39 |
38
|
3adant2 |
|- ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) -> ( A C. ( A vH C ) <-> A |
| 40 |
37 39
|
sylibd |
|- ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) -> ( ( B C_ ( A vH C ) /\ ( A i^i B ) = 0H ) -> A |
| 41 |
|
cvnbtwn2 |
|- ( ( A e. CH /\ ( A vH C ) e. CH /\ ( A vH B ) e. CH ) -> ( A ( ( A C. ( A vH B ) /\ ( A vH B ) C_ ( A vH C ) ) -> ( A vH B ) = ( A vH C ) ) ) ) |
| 42 |
33 40 41
|
sylsyld |
|- ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) -> ( ( B C_ ( A vH C ) /\ ( A i^i B ) = 0H ) -> ( ( A C. ( A vH B ) /\ ( A vH B ) C_ ( A vH C ) ) -> ( A vH B ) = ( A vH C ) ) ) ) |
| 43 |
42
|
imp |
|- ( ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) /\ ( B C_ ( A vH C ) /\ ( A i^i B ) = 0H ) ) -> ( ( A C. ( A vH B ) /\ ( A vH B ) C_ ( A vH C ) ) -> ( A vH B ) = ( A vH C ) ) ) |
| 44 |
29 43
|
mpd |
|- ( ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) /\ ( B C_ ( A vH C ) /\ ( A i^i B ) = 0H ) ) -> ( A vH B ) = ( A vH C ) ) |
| 45 |
6 44
|
sseqtrrd |
|- ( ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) /\ ( B C_ ( A vH C ) /\ ( A i^i B ) = 0H ) ) -> C C_ ( A vH B ) ) |
| 46 |
45
|
ex |
|- ( ( A e. CH /\ B e. HAtoms /\ C e. HAtoms ) -> ( ( B C_ ( A vH C ) /\ ( A i^i B ) = 0H ) -> C C_ ( A vH B ) ) ) |