Metamath Proof Explorer


Theorem atl0cl

Description: An atomic lattice has a zero element. We can use this in place of op0cl for lattices without orthocomplements. (Contributed by NM, 5-Nov-2012)

Ref Expression
Hypotheses atl0cl.b
|- B = ( Base ` K )
atl0cl.z
|- .0. = ( 0. ` K )
Assertion atl0cl
|- ( K e. AtLat -> .0. e. B )

Proof

Step Hyp Ref Expression
1 atl0cl.b
 |-  B = ( Base ` K )
2 atl0cl.z
 |-  .0. = ( 0. ` K )
3 eqid
 |-  ( glb ` K ) = ( glb ` K )
4 1 3 2 p0val
 |-  ( K e. AtLat -> .0. = ( ( glb ` K ) ` B ) )
5 id
 |-  ( K e. AtLat -> K e. AtLat )
6 eqid
 |-  ( lub ` K ) = ( lub ` K )
7 1 6 3 atl0dm
 |-  ( K e. AtLat -> B e. dom ( glb ` K ) )
8 1 3 5 7 glbcl
 |-  ( K e. AtLat -> ( ( glb ` K ) ` B ) e. B )
9 4 8 eqeltrd
 |-  ( K e. AtLat -> .0. e. B )