Description: An atomic lattice has a zero element. We can use this in place of op0cl for lattices without orthocomplements. (Contributed by NM, 5-Nov-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | atl0cl.b | |- B = ( Base ` K ) |
|
atl0cl.z | |- .0. = ( 0. ` K ) |
||
Assertion | atl0cl | |- ( K e. AtLat -> .0. e. B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | atl0cl.b | |- B = ( Base ` K ) |
|
2 | atl0cl.z | |- .0. = ( 0. ` K ) |
|
3 | eqid | |- ( glb ` K ) = ( glb ` K ) |
|
4 | 1 3 2 | p0val | |- ( K e. AtLat -> .0. = ( ( glb ` K ) ` B ) ) |
5 | id | |- ( K e. AtLat -> K e. AtLat ) |
|
6 | eqid | |- ( lub ` K ) = ( lub ` K ) |
|
7 | 1 6 3 | atl0dm | |- ( K e. AtLat -> B e. dom ( glb ` K ) ) |
8 | 1 3 5 7 | glbcl | |- ( K e. AtLat -> ( ( glb ` K ) ` B ) e. B ) |
9 | 4 8 | eqeltrd | |- ( K e. AtLat -> .0. e. B ) |