Description: Condition necessary for zero element to exist. (Contributed by NM, 14-Sep-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | atl01dm.b | |- B = ( Base ` K ) |
|
atl01dm.u | |- U = ( lub ` K ) |
||
atl01dm.g | |- G = ( glb ` K ) |
||
Assertion | atl0dm | |- ( K e. AtLat -> B e. dom G ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | atl01dm.b | |- B = ( Base ` K ) |
|
2 | atl01dm.u | |- U = ( lub ` K ) |
|
3 | atl01dm.g | |- G = ( glb ` K ) |
|
4 | eqid | |- ( le ` K ) = ( le ` K ) |
|
5 | eqid | |- ( 0. ` K ) = ( 0. ` K ) |
|
6 | eqid | |- ( Atoms ` K ) = ( Atoms ` K ) |
|
7 | 1 3 4 5 6 | isatl | |- ( K e. AtLat <-> ( K e. Lat /\ B e. dom G /\ A. x e. B ( x =/= ( 0. ` K ) -> E. y e. ( Atoms ` K ) y ( le ` K ) x ) ) ) |
8 | 7 | simp2bi | |- ( K e. AtLat -> B e. dom G ) |