Description: Condition necessary for zero element to exist. (Contributed by NM, 14-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | atl01dm.b | |- B = ( Base ` K ) |
|
| atl01dm.u | |- U = ( lub ` K ) |
||
| atl01dm.g | |- G = ( glb ` K ) |
||
| Assertion | atl0dm | |- ( K e. AtLat -> B e. dom G ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atl01dm.b | |- B = ( Base ` K ) |
|
| 2 | atl01dm.u | |- U = ( lub ` K ) |
|
| 3 | atl01dm.g | |- G = ( glb ` K ) |
|
| 4 | eqid | |- ( le ` K ) = ( le ` K ) |
|
| 5 | eqid | |- ( 0. ` K ) = ( 0. ` K ) |
|
| 6 | eqid | |- ( Atoms ` K ) = ( Atoms ` K ) |
|
| 7 | 1 3 4 5 6 | isatl | |- ( K e. AtLat <-> ( K e. Lat /\ B e. dom G /\ A. x e. B ( x =/= ( 0. ` K ) -> E. y e. ( Atoms ` K ) y ( le ` K ) x ) ) ) |
| 8 | 7 | simp2bi | |- ( K e. AtLat -> B e. dom G ) |