Metamath Proof Explorer


Theorem atl0dm

Description: Condition necessary for zero element to exist. (Contributed by NM, 14-Sep-2018)

Ref Expression
Hypotheses atl01dm.b
|- B = ( Base ` K )
atl01dm.u
|- U = ( lub ` K )
atl01dm.g
|- G = ( glb ` K )
Assertion atl0dm
|- ( K e. AtLat -> B e. dom G )

Proof

Step Hyp Ref Expression
1 atl01dm.b
 |-  B = ( Base ` K )
2 atl01dm.u
 |-  U = ( lub ` K )
3 atl01dm.g
 |-  G = ( glb ` K )
4 eqid
 |-  ( le ` K ) = ( le ` K )
5 eqid
 |-  ( 0. ` K ) = ( 0. ` K )
6 eqid
 |-  ( Atoms ` K ) = ( Atoms ` K )
7 1 3 4 5 6 isatl
 |-  ( K e. AtLat <-> ( K e. Lat /\ B e. dom G /\ A. x e. B ( x =/= ( 0. ` K ) -> E. y e. ( Atoms ` K ) y ( le ` K ) x ) ) )
8 7 simp2bi
 |-  ( K e. AtLat -> B e. dom G )