Description: Orthoposet zero is less than or equal to any element. ( ch0le analog.) (Contributed by NM, 12-Oct-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | atl0le.b | |- B = ( Base ` K ) |
|
atl0le.l | |- .<_ = ( le ` K ) |
||
atl0le.z | |- .0. = ( 0. ` K ) |
||
Assertion | atl0le | |- ( ( K e. AtLat /\ X e. B ) -> .0. .<_ X ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | atl0le.b | |- B = ( Base ` K ) |
|
2 | atl0le.l | |- .<_ = ( le ` K ) |
|
3 | atl0le.z | |- .0. = ( 0. ` K ) |
|
4 | eqid | |- ( glb ` K ) = ( glb ` K ) |
|
5 | simpl | |- ( ( K e. AtLat /\ X e. B ) -> K e. AtLat ) |
|
6 | simpr | |- ( ( K e. AtLat /\ X e. B ) -> X e. B ) |
|
7 | eqid | |- ( lub ` K ) = ( lub ` K ) |
|
8 | 1 7 4 | atl0dm | |- ( K e. AtLat -> B e. dom ( glb ` K ) ) |
9 | 8 | adantr | |- ( ( K e. AtLat /\ X e. B ) -> B e. dom ( glb ` K ) ) |
10 | 1 4 2 3 5 6 9 | p0le | |- ( ( K e. AtLat /\ X e. B ) -> .0. .<_ X ) |