Step |
Hyp |
Ref |
Expression |
1 |
|
atle.b |
|- B = ( Base ` K ) |
2 |
|
atle.l |
|- .<_ = ( le ` K ) |
3 |
|
atle.z |
|- .0. = ( 0. ` K ) |
4 |
|
atle.a |
|- A = ( Atoms ` K ) |
5 |
|
simp1 |
|- ( ( K e. HL /\ X e. B /\ X =/= .0. ) -> K e. HL ) |
6 |
|
hlop |
|- ( K e. HL -> K e. OP ) |
7 |
6
|
3ad2ant1 |
|- ( ( K e. HL /\ X e. B /\ X =/= .0. ) -> K e. OP ) |
8 |
1 3
|
op0cl |
|- ( K e. OP -> .0. e. B ) |
9 |
7 8
|
syl |
|- ( ( K e. HL /\ X e. B /\ X =/= .0. ) -> .0. e. B ) |
10 |
|
simp2 |
|- ( ( K e. HL /\ X e. B /\ X =/= .0. ) -> X e. B ) |
11 |
|
simp3 |
|- ( ( K e. HL /\ X e. B /\ X =/= .0. ) -> X =/= .0. ) |
12 |
|
eqid |
|- ( lt ` K ) = ( lt ` K ) |
13 |
1 12 3
|
opltn0 |
|- ( ( K e. OP /\ X e. B ) -> ( .0. ( lt ` K ) X <-> X =/= .0. ) ) |
14 |
7 10 13
|
syl2anc |
|- ( ( K e. HL /\ X e. B /\ X =/= .0. ) -> ( .0. ( lt ` K ) X <-> X =/= .0. ) ) |
15 |
11 14
|
mpbird |
|- ( ( K e. HL /\ X e. B /\ X =/= .0. ) -> .0. ( lt ` K ) X ) |
16 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
17 |
1 2 12 16 4
|
hlrelat |
|- ( ( ( K e. HL /\ .0. e. B /\ X e. B ) /\ .0. ( lt ` K ) X ) -> E. p e. A ( .0. ( lt ` K ) ( .0. ( join ` K ) p ) /\ ( .0. ( join ` K ) p ) .<_ X ) ) |
18 |
5 9 10 15 17
|
syl31anc |
|- ( ( K e. HL /\ X e. B /\ X =/= .0. ) -> E. p e. A ( .0. ( lt ` K ) ( .0. ( join ` K ) p ) /\ ( .0. ( join ` K ) p ) .<_ X ) ) |
19 |
|
simpl1 |
|- ( ( ( K e. HL /\ X e. B /\ X =/= .0. ) /\ p e. A ) -> K e. HL ) |
20 |
|
hlol |
|- ( K e. HL -> K e. OL ) |
21 |
19 20
|
syl |
|- ( ( ( K e. HL /\ X e. B /\ X =/= .0. ) /\ p e. A ) -> K e. OL ) |
22 |
1 4
|
atbase |
|- ( p e. A -> p e. B ) |
23 |
22
|
adantl |
|- ( ( ( K e. HL /\ X e. B /\ X =/= .0. ) /\ p e. A ) -> p e. B ) |
24 |
1 16 3
|
olj02 |
|- ( ( K e. OL /\ p e. B ) -> ( .0. ( join ` K ) p ) = p ) |
25 |
21 23 24
|
syl2anc |
|- ( ( ( K e. HL /\ X e. B /\ X =/= .0. ) /\ p e. A ) -> ( .0. ( join ` K ) p ) = p ) |
26 |
25
|
breq1d |
|- ( ( ( K e. HL /\ X e. B /\ X =/= .0. ) /\ p e. A ) -> ( ( .0. ( join ` K ) p ) .<_ X <-> p .<_ X ) ) |
27 |
26
|
biimpd |
|- ( ( ( K e. HL /\ X e. B /\ X =/= .0. ) /\ p e. A ) -> ( ( .0. ( join ` K ) p ) .<_ X -> p .<_ X ) ) |
28 |
27
|
adantld |
|- ( ( ( K e. HL /\ X e. B /\ X =/= .0. ) /\ p e. A ) -> ( ( .0. ( lt ` K ) ( .0. ( join ` K ) p ) /\ ( .0. ( join ` K ) p ) .<_ X ) -> p .<_ X ) ) |
29 |
28
|
reximdva |
|- ( ( K e. HL /\ X e. B /\ X =/= .0. ) -> ( E. p e. A ( .0. ( lt ` K ) ( .0. ( join ` K ) p ) /\ ( .0. ( join ` K ) p ) .<_ X ) -> E. p e. A p .<_ X ) ) |
30 |
18 29
|
mpd |
|- ( ( K e. HL /\ X e. B /\ X =/= .0. ) -> E. p e. A p .<_ X ) |