| Step | Hyp | Ref | Expression | 
						
							| 1 |  | atle.b |  |-  B = ( Base ` K ) | 
						
							| 2 |  | atle.l |  |-  .<_ = ( le ` K ) | 
						
							| 3 |  | atle.z |  |-  .0. = ( 0. ` K ) | 
						
							| 4 |  | atle.a |  |-  A = ( Atoms ` K ) | 
						
							| 5 |  | simp1 |  |-  ( ( K e. HL /\ X e. B /\ X =/= .0. ) -> K e. HL ) | 
						
							| 6 |  | hlop |  |-  ( K e. HL -> K e. OP ) | 
						
							| 7 | 6 | 3ad2ant1 |  |-  ( ( K e. HL /\ X e. B /\ X =/= .0. ) -> K e. OP ) | 
						
							| 8 | 1 3 | op0cl |  |-  ( K e. OP -> .0. e. B ) | 
						
							| 9 | 7 8 | syl |  |-  ( ( K e. HL /\ X e. B /\ X =/= .0. ) -> .0. e. B ) | 
						
							| 10 |  | simp2 |  |-  ( ( K e. HL /\ X e. B /\ X =/= .0. ) -> X e. B ) | 
						
							| 11 |  | simp3 |  |-  ( ( K e. HL /\ X e. B /\ X =/= .0. ) -> X =/= .0. ) | 
						
							| 12 |  | eqid |  |-  ( lt ` K ) = ( lt ` K ) | 
						
							| 13 | 1 12 3 | opltn0 |  |-  ( ( K e. OP /\ X e. B ) -> ( .0. ( lt ` K ) X <-> X =/= .0. ) ) | 
						
							| 14 | 7 10 13 | syl2anc |  |-  ( ( K e. HL /\ X e. B /\ X =/= .0. ) -> ( .0. ( lt ` K ) X <-> X =/= .0. ) ) | 
						
							| 15 | 11 14 | mpbird |  |-  ( ( K e. HL /\ X e. B /\ X =/= .0. ) -> .0. ( lt ` K ) X ) | 
						
							| 16 |  | eqid |  |-  ( join ` K ) = ( join ` K ) | 
						
							| 17 | 1 2 12 16 4 | hlrelat |  |-  ( ( ( K e. HL /\ .0. e. B /\ X e. B ) /\ .0. ( lt ` K ) X ) -> E. p e. A ( .0. ( lt ` K ) ( .0. ( join ` K ) p ) /\ ( .0. ( join ` K ) p ) .<_ X ) ) | 
						
							| 18 | 5 9 10 15 17 | syl31anc |  |-  ( ( K e. HL /\ X e. B /\ X =/= .0. ) -> E. p e. A ( .0. ( lt ` K ) ( .0. ( join ` K ) p ) /\ ( .0. ( join ` K ) p ) .<_ X ) ) | 
						
							| 19 |  | simpl1 |  |-  ( ( ( K e. HL /\ X e. B /\ X =/= .0. ) /\ p e. A ) -> K e. HL ) | 
						
							| 20 |  | hlol |  |-  ( K e. HL -> K e. OL ) | 
						
							| 21 | 19 20 | syl |  |-  ( ( ( K e. HL /\ X e. B /\ X =/= .0. ) /\ p e. A ) -> K e. OL ) | 
						
							| 22 | 1 4 | atbase |  |-  ( p e. A -> p e. B ) | 
						
							| 23 | 22 | adantl |  |-  ( ( ( K e. HL /\ X e. B /\ X =/= .0. ) /\ p e. A ) -> p e. B ) | 
						
							| 24 | 1 16 3 | olj02 |  |-  ( ( K e. OL /\ p e. B ) -> ( .0. ( join ` K ) p ) = p ) | 
						
							| 25 | 21 23 24 | syl2anc |  |-  ( ( ( K e. HL /\ X e. B /\ X =/= .0. ) /\ p e. A ) -> ( .0. ( join ` K ) p ) = p ) | 
						
							| 26 | 25 | breq1d |  |-  ( ( ( K e. HL /\ X e. B /\ X =/= .0. ) /\ p e. A ) -> ( ( .0. ( join ` K ) p ) .<_ X <-> p .<_ X ) ) | 
						
							| 27 | 26 | biimpd |  |-  ( ( ( K e. HL /\ X e. B /\ X =/= .0. ) /\ p e. A ) -> ( ( .0. ( join ` K ) p ) .<_ X -> p .<_ X ) ) | 
						
							| 28 | 27 | adantld |  |-  ( ( ( K e. HL /\ X e. B /\ X =/= .0. ) /\ p e. A ) -> ( ( .0. ( lt ` K ) ( .0. ( join ` K ) p ) /\ ( .0. ( join ` K ) p ) .<_ X ) -> p .<_ X ) ) | 
						
							| 29 | 28 | reximdva |  |-  ( ( K e. HL /\ X e. B /\ X =/= .0. ) -> ( E. p e. A ( .0. ( lt ` K ) ( .0. ( join ` K ) p ) /\ ( .0. ( join ` K ) p ) .<_ X ) -> E. p e. A p .<_ X ) ) | 
						
							| 30 | 18 29 | mpd |  |-  ( ( K e. HL /\ X e. B /\ X =/= .0. ) -> E. p e. A p .<_ X ) |