Metamath Proof Explorer


Theorem atleneN

Description: Inequality derived from atom condition. (Contributed by NM, 7-Feb-2012) (New usage is discouraged.)

Ref Expression
Hypotheses atlene.l
|- .<_ = ( le ` K )
atlene.j
|- .\/ = ( join ` K )
atlene.a
|- A = ( Atoms ` K )
Assertion atleneN
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= R /\ P .<_ ( Q .\/ R ) ) ) -> Q =/= R )

Proof

Step Hyp Ref Expression
1 atlene.l
 |-  .<_ = ( le ` K )
2 atlene.j
 |-  .\/ = ( join ` K )
3 atlene.a
 |-  A = ( Atoms ` K )
4 eqid
 |-  ( 
5 1 2 4 3 atcvrj1
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= R /\ P .<_ ( Q .\/ R ) ) ) -> P ( 
6 2 4 3 atcvrneN
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P (  Q =/= R )
7 5 6 syld3an3
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= R /\ P .<_ ( Q .\/ R ) ) ) -> Q =/= R )