Description: Inequality derived from atom condition. (Contributed by NM, 7-Feb-2012) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | atlene.l | |- .<_ = ( le ` K ) |
|
| atlene.j | |- .\/ = ( join ` K ) |
||
| atlene.a | |- A = ( Atoms ` K ) |
||
| Assertion | atleneN | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= R /\ P .<_ ( Q .\/ R ) ) ) -> Q =/= R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atlene.l | |- .<_ = ( le ` K ) |
|
| 2 | atlene.j | |- .\/ = ( join ` K ) |
|
| 3 | atlene.a | |- A = ( Atoms ` K ) |
|
| 4 | eqid | |- ( |
|
| 5 | 1 2 4 3 | atcvrj1 | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= R /\ P .<_ ( Q .\/ R ) ) ) -> P ( |
| 6 | 2 4 3 | atcvrneN | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P ( |
| 7 | 5 6 | syld3an3 | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= R /\ P .<_ ( Q .\/ R ) ) ) -> Q =/= R ) |