| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							atlex.b | 
							 |-  B = ( Base ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							atlex.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							atlex.z | 
							 |-  .0. = ( 0. ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							atlex.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 5 | 
							
								
							 | 
							eqid | 
							 |-  ( glb ` K ) = ( glb ` K )  | 
						
						
							| 6 | 
							
								1 5 2 3 4
							 | 
							isatl | 
							 |-  ( K e. AtLat <-> ( K e. Lat /\ B e. dom ( glb ` K ) /\ A. x e. B ( x =/= .0. -> E. y e. A y .<_ x ) ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							simp3bi | 
							 |-  ( K e. AtLat -> A. x e. B ( x =/= .0. -> E. y e. A y .<_ x ) )  | 
						
						
							| 8 | 
							
								
							 | 
							neeq1 | 
							 |-  ( x = X -> ( x =/= .0. <-> X =/= .0. ) )  | 
						
						
							| 9 | 
							
								
							 | 
							breq2 | 
							 |-  ( x = X -> ( y .<_ x <-> y .<_ X ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							rexbidv | 
							 |-  ( x = X -> ( E. y e. A y .<_ x <-> E. y e. A y .<_ X ) )  | 
						
						
							| 11 | 
							
								8 10
							 | 
							imbi12d | 
							 |-  ( x = X -> ( ( x =/= .0. -> E. y e. A y .<_ x ) <-> ( X =/= .0. -> E. y e. A y .<_ X ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							rspccv | 
							 |-  ( A. x e. B ( x =/= .0. -> E. y e. A y .<_ x ) -> ( X e. B -> ( X =/= .0. -> E. y e. A y .<_ X ) ) )  | 
						
						
							| 13 | 
							
								7 12
							 | 
							syl | 
							 |-  ( K e. AtLat -> ( X e. B -> ( X =/= .0. -> E. y e. A y .<_ X ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							3imp | 
							 |-  ( ( K e. AtLat /\ X e. B /\ X =/= .0. ) -> E. y e. A y .<_ X )  |