Metamath Proof Explorer


Theorem atlpos

Description: An atomic lattice is a poset. (Contributed by NM, 5-Nov-2012)

Ref Expression
Assertion atlpos
|- ( K e. AtLat -> K e. Poset )

Proof

Step Hyp Ref Expression
1 atllat
 |-  ( K e. AtLat -> K e. Lat )
2 latpos
 |-  ( K e. Lat -> K e. Poset )
3 1 2 syl
 |-  ( K e. AtLat -> K e. Poset )