Metamath Proof Explorer


Theorem atlt

Description: Two atoms are unequal iff their join is greater than one of them. (Contributed by NM, 6-May-2012)

Ref Expression
Hypotheses atlt.s
|- .< = ( lt ` K )
atlt.j
|- .\/ = ( join ` K )
atlt.a
|- A = ( Atoms ` K )
Assertion atlt
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .< ( P .\/ Q ) <-> P =/= Q ) )

Proof

Step Hyp Ref Expression
1 atlt.s
 |-  .< = ( lt ` K )
2 atlt.j
 |-  .\/ = ( join ` K )
3 atlt.a
 |-  A = ( Atoms ` K )
4 simp1
 |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> K e. HL )
5 simp2
 |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> P e. A )
6 simp3
 |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> Q e. A )
7 eqid
 |-  ( 
8 1 2 3 7 atltcvr
 |-  ( ( K e. HL /\ ( P e. A /\ P e. A /\ Q e. A ) ) -> ( P .< ( P .\/ Q ) <-> P ( 
9 4 5 5 6 8 syl13anc
 |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .< ( P .\/ Q ) <-> P ( 
10 2 7 3 atcvr1
 |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P =/= Q <-> P ( 
11 9 10 bitr4d
 |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .< ( P .\/ Q ) <-> P =/= Q ) )