Step |
Hyp |
Ref |
Expression |
1 |
|
cvp |
|- ( ( A e. CH /\ B e. HAtoms ) -> ( ( A i^i B ) = 0H <-> A |
2 |
|
atelch |
|- ( B e. HAtoms -> B e. CH ) |
3 |
|
cvexch |
|- ( ( A e. CH /\ B e. CH ) -> ( ( A i^i B ) A |
4 |
|
cvmd |
|- ( ( A e. CH /\ B e. CH /\ ( A i^i B ) A MH B ) |
5 |
4
|
3expia |
|- ( ( A e. CH /\ B e. CH ) -> ( ( A i^i B ) A MH B ) ) |
6 |
3 5
|
sylbird |
|- ( ( A e. CH /\ B e. CH ) -> ( A A MH B ) ) |
7 |
2 6
|
sylan2 |
|- ( ( A e. CH /\ B e. HAtoms ) -> ( A A MH B ) ) |
8 |
1 7
|
sylbid |
|- ( ( A e. CH /\ B e. HAtoms ) -> ( ( A i^i B ) = 0H -> A MH B ) ) |
9 |
|
atnssm0 |
|- ( ( A e. CH /\ B e. HAtoms ) -> ( -. B C_ A <-> ( A i^i B ) = 0H ) ) |
10 |
9
|
con1bid |
|- ( ( A e. CH /\ B e. HAtoms ) -> ( -. ( A i^i B ) = 0H <-> B C_ A ) ) |
11 |
|
ssmd2 |
|- ( ( B e. CH /\ A e. CH /\ B C_ A ) -> A MH B ) |
12 |
11
|
3com12 |
|- ( ( A e. CH /\ B e. CH /\ B C_ A ) -> A MH B ) |
13 |
2 12
|
syl3an2 |
|- ( ( A e. CH /\ B e. HAtoms /\ B C_ A ) -> A MH B ) |
14 |
13
|
3expia |
|- ( ( A e. CH /\ B e. HAtoms ) -> ( B C_ A -> A MH B ) ) |
15 |
10 14
|
sylbid |
|- ( ( A e. CH /\ B e. HAtoms ) -> ( -. ( A i^i B ) = 0H -> A MH B ) ) |
16 |
8 15
|
pm2.61d |
|- ( ( A e. CH /\ B e. HAtoms ) -> A MH B ) |