| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvp |
|- ( ( A e. CH /\ B e. HAtoms ) -> ( ( A i^i B ) = 0H <-> A |
| 2 |
|
atelch |
|- ( B e. HAtoms -> B e. CH ) |
| 3 |
|
cvexch |
|- ( ( A e. CH /\ B e. CH ) -> ( ( A i^i B ) A |
| 4 |
|
cvmd |
|- ( ( A e. CH /\ B e. CH /\ ( A i^i B ) A MH B ) |
| 5 |
4
|
3expia |
|- ( ( A e. CH /\ B e. CH ) -> ( ( A i^i B ) A MH B ) ) |
| 6 |
3 5
|
sylbird |
|- ( ( A e. CH /\ B e. CH ) -> ( A A MH B ) ) |
| 7 |
2 6
|
sylan2 |
|- ( ( A e. CH /\ B e. HAtoms ) -> ( A A MH B ) ) |
| 8 |
1 7
|
sylbid |
|- ( ( A e. CH /\ B e. HAtoms ) -> ( ( A i^i B ) = 0H -> A MH B ) ) |
| 9 |
|
atnssm0 |
|- ( ( A e. CH /\ B e. HAtoms ) -> ( -. B C_ A <-> ( A i^i B ) = 0H ) ) |
| 10 |
9
|
con1bid |
|- ( ( A e. CH /\ B e. HAtoms ) -> ( -. ( A i^i B ) = 0H <-> B C_ A ) ) |
| 11 |
|
ssmd2 |
|- ( ( B e. CH /\ A e. CH /\ B C_ A ) -> A MH B ) |
| 12 |
11
|
3com12 |
|- ( ( A e. CH /\ B e. CH /\ B C_ A ) -> A MH B ) |
| 13 |
2 12
|
syl3an2 |
|- ( ( A e. CH /\ B e. HAtoms /\ B C_ A ) -> A MH B ) |
| 14 |
13
|
3expia |
|- ( ( A e. CH /\ B e. HAtoms ) -> ( B C_ A -> A MH B ) ) |
| 15 |
10 14
|
sylbid |
|- ( ( A e. CH /\ B e. HAtoms ) -> ( -. ( A i^i B ) = 0H -> A MH B ) ) |
| 16 |
8 15
|
pm2.61d |
|- ( ( A e. CH /\ B e. HAtoms ) -> A MH B ) |