| Step |
Hyp |
Ref |
Expression |
| 1 |
|
atmod.b |
|- B = ( Base ` K ) |
| 2 |
|
atmod.l |
|- .<_ = ( le ` K ) |
| 3 |
|
atmod.j |
|- .\/ = ( join ` K ) |
| 4 |
|
atmod.m |
|- ./\ = ( meet ` K ) |
| 5 |
|
atmod.a |
|- A = ( Atoms ` K ) |
| 6 |
|
simpl |
|- ( ( K e. HL /\ ( P e. A /\ X e. B /\ Y e. B ) ) -> K e. HL ) |
| 7 |
|
simpr2 |
|- ( ( K e. HL /\ ( P e. A /\ X e. B /\ Y e. B ) ) -> X e. B ) |
| 8 |
|
simpr1 |
|- ( ( K e. HL /\ ( P e. A /\ X e. B /\ Y e. B ) ) -> P e. A ) |
| 9 |
|
eqid |
|- ( pmap ` K ) = ( pmap ` K ) |
| 10 |
|
eqid |
|- ( +P ` K ) = ( +P ` K ) |
| 11 |
1 3 5 9 10
|
pmapjat1 |
|- ( ( K e. HL /\ X e. B /\ P e. A ) -> ( ( pmap ` K ) ` ( X .\/ P ) ) = ( ( ( pmap ` K ) ` X ) ( +P ` K ) ( ( pmap ` K ) ` P ) ) ) |
| 12 |
6 7 8 11
|
syl3anc |
|- ( ( K e. HL /\ ( P e. A /\ X e. B /\ Y e. B ) ) -> ( ( pmap ` K ) ` ( X .\/ P ) ) = ( ( ( pmap ` K ) ` X ) ( +P ` K ) ( ( pmap ` K ) ` P ) ) ) |
| 13 |
1 5
|
atbase |
|- ( P e. A -> P e. B ) |
| 14 |
8 13
|
syl |
|- ( ( K e. HL /\ ( P e. A /\ X e. B /\ Y e. B ) ) -> P e. B ) |
| 15 |
|
simpr3 |
|- ( ( K e. HL /\ ( P e. A /\ X e. B /\ Y e. B ) ) -> Y e. B ) |
| 16 |
1 2 3 4 9 10
|
hlmod1i |
|- ( ( K e. HL /\ ( X e. B /\ P e. B /\ Y e. B ) ) -> ( ( X .<_ Y /\ ( ( pmap ` K ) ` ( X .\/ P ) ) = ( ( ( pmap ` K ) ` X ) ( +P ` K ) ( ( pmap ` K ) ` P ) ) ) -> ( ( X .\/ P ) ./\ Y ) = ( X .\/ ( P ./\ Y ) ) ) ) |
| 17 |
6 7 14 15 16
|
syl13anc |
|- ( ( K e. HL /\ ( P e. A /\ X e. B /\ Y e. B ) ) -> ( ( X .<_ Y /\ ( ( pmap ` K ) ` ( X .\/ P ) ) = ( ( ( pmap ` K ) ` X ) ( +P ` K ) ( ( pmap ` K ) ` P ) ) ) -> ( ( X .\/ P ) ./\ Y ) = ( X .\/ ( P ./\ Y ) ) ) ) |
| 18 |
12 17
|
mpan2d |
|- ( ( K e. HL /\ ( P e. A /\ X e. B /\ Y e. B ) ) -> ( X .<_ Y -> ( ( X .\/ P ) ./\ Y ) = ( X .\/ ( P ./\ Y ) ) ) ) |
| 19 |
18
|
3impia |
|- ( ( K e. HL /\ ( P e. A /\ X e. B /\ Y e. B ) /\ X .<_ Y ) -> ( ( X .\/ P ) ./\ Y ) = ( X .\/ ( P ./\ Y ) ) ) |
| 20 |
19
|
eqcomd |
|- ( ( K e. HL /\ ( P e. A /\ X e. B /\ Y e. B ) /\ X .<_ Y ) -> ( X .\/ ( P ./\ Y ) ) = ( ( X .\/ P ) ./\ Y ) ) |