Metamath Proof Explorer


Theorem atncmp

Description: Frequently-used variation of atcmp . (Contributed by NM, 29-Jun-2012)

Ref Expression
Hypotheses atcmp.l
|- .<_ = ( le ` K )
atcmp.a
|- A = ( Atoms ` K )
Assertion atncmp
|- ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> ( -. P .<_ Q <-> P =/= Q ) )

Proof

Step Hyp Ref Expression
1 atcmp.l
 |-  .<_ = ( le ` K )
2 atcmp.a
 |-  A = ( Atoms ` K )
3 1 2 atcmp
 |-  ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> ( P .<_ Q <-> P = Q ) )
4 3 necon3bbid
 |-  ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> ( -. P .<_ Q <-> P =/= Q ) )