| Step |
Hyp |
Ref |
Expression |
| 1 |
|
atncvr.c |
|- C = ( |
| 2 |
|
atncvr.a |
|- A = ( Atoms ` K ) |
| 3 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
| 4 |
3 2
|
atn0 |
|- ( ( K e. AtLat /\ P e. A ) -> P =/= ( 0. ` K ) ) |
| 5 |
4
|
3adant3 |
|- ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> P =/= ( 0. ` K ) ) |
| 6 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 7 |
6 2
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
| 8 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
| 9 |
6 8 3 1 2
|
atcvreq0 |
|- ( ( K e. AtLat /\ P e. ( Base ` K ) /\ Q e. A ) -> ( P C Q <-> P = ( 0. ` K ) ) ) |
| 10 |
7 9
|
syl3an2 |
|- ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> ( P C Q <-> P = ( 0. ` K ) ) ) |
| 11 |
10
|
necon3bbid |
|- ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> ( -. P C Q <-> P =/= ( 0. ` K ) ) ) |
| 12 |
5 11
|
mpbird |
|- ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> -. P C Q ) |