| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							atnem0.m | 
							 |-  ./\ = ( meet ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							atnem0.z | 
							 |-  .0. = ( 0. ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							atnem0.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							eqid | 
							 |-  ( le ` K ) = ( le ` K )  | 
						
						
							| 5 | 
							
								4 3
							 | 
							atncmp | 
							 |-  ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> ( -. P ( le ` K ) Q <-> P =/= Q ) )  | 
						
						
							| 6 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` K ) = ( Base ` K )  | 
						
						
							| 7 | 
							
								6 3
							 | 
							atbase | 
							 |-  ( Q e. A -> Q e. ( Base ` K ) )  | 
						
						
							| 8 | 
							
								6 4 1 2 3
							 | 
							atnle | 
							 |-  ( ( K e. AtLat /\ P e. A /\ Q e. ( Base ` K ) ) -> ( -. P ( le ` K ) Q <-> ( P ./\ Q ) = .0. ) )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							syl3an3 | 
							 |-  ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> ( -. P ( le ` K ) Q <-> ( P ./\ Q ) = .0. ) )  | 
						
						
							| 10 | 
							
								5 9
							 | 
							bitr3d | 
							 |-  ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> ( P =/= Q <-> ( P ./\ Q ) = .0. ) )  |