| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							atsseq | 
							 |-  ( ( B e. HAtoms /\ A e. HAtoms ) -> ( B C_ A <-> B = A ) )  | 
						
						
							| 2 | 
							
								
							 | 
							eqcom | 
							 |-  ( B = A <-> A = B )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							bitrdi | 
							 |-  ( ( B e. HAtoms /\ A e. HAtoms ) -> ( B C_ A <-> A = B ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							ancoms | 
							 |-  ( ( A e. HAtoms /\ B e. HAtoms ) -> ( B C_ A <-> A = B ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							necon3bbid | 
							 |-  ( ( A e. HAtoms /\ B e. HAtoms ) -> ( -. B C_ A <-> A =/= B ) )  | 
						
						
							| 6 | 
							
								
							 | 
							atelch | 
							 |-  ( A e. HAtoms -> A e. CH )  | 
						
						
							| 7 | 
							
								
							 | 
							atnssm0 | 
							 |-  ( ( A e. CH /\ B e. HAtoms ) -> ( -. B C_ A <-> ( A i^i B ) = 0H ) )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							sylan | 
							 |-  ( ( A e. HAtoms /\ B e. HAtoms ) -> ( -. B C_ A <-> ( A i^i B ) = 0H ) )  | 
						
						
							| 9 | 
							
								5 8
							 | 
							bitr3d | 
							 |-  ( ( A e. HAtoms /\ B e. HAtoms ) -> ( A =/= B <-> ( A i^i B ) = 0H ) )  |