| Step |
Hyp |
Ref |
Expression |
| 1 |
|
atnle0.l |
|- .<_ = ( le ` K ) |
| 2 |
|
atnle0.z |
|- .0. = ( 0. ` K ) |
| 3 |
|
atnle0.a |
|- A = ( Atoms ` K ) |
| 4 |
|
atlpos |
|- ( K e. AtLat -> K e. Poset ) |
| 5 |
4
|
adantr |
|- ( ( K e. AtLat /\ P e. A ) -> K e. Poset ) |
| 6 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 7 |
6 2
|
atl0cl |
|- ( K e. AtLat -> .0. e. ( Base ` K ) ) |
| 8 |
7
|
adantr |
|- ( ( K e. AtLat /\ P e. A ) -> .0. e. ( Base ` K ) ) |
| 9 |
6 3
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
| 10 |
9
|
adantl |
|- ( ( K e. AtLat /\ P e. A ) -> P e. ( Base ` K ) ) |
| 11 |
|
eqid |
|- ( |
| 12 |
2 11 3
|
atcvr0 |
|- ( ( K e. AtLat /\ P e. A ) -> .0. ( |
| 13 |
6 1 11
|
cvrnle |
|- ( ( ( K e. Poset /\ .0. e. ( Base ` K ) /\ P e. ( Base ` K ) ) /\ .0. ( -. P .<_ .0. ) |
| 14 |
5 8 10 12 13
|
syl31anc |
|- ( ( K e. AtLat /\ P e. A ) -> -. P .<_ .0. ) |