| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							atnlt.s | 
							 |-  .< = ( lt ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							atnlt.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 3 | 
							
								1
							 | 
							pltirr | 
							 |-  ( ( K e. AtLat /\ P e. A ) -> -. P .< P )  | 
						
						
							| 4 | 
							
								3
							 | 
							3adant3 | 
							 |-  ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> -. P .< P )  | 
						
						
							| 5 | 
							
								
							 | 
							breq2 | 
							 |-  ( P = Q -> ( P .< P <-> P .< Q ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							notbid | 
							 |-  ( P = Q -> ( -. P .< P <-> -. P .< Q ) )  | 
						
						
							| 7 | 
							
								4 6
							 | 
							syl5ibcom | 
							 |-  ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> ( P = Q -> -. P .< Q ) )  | 
						
						
							| 8 | 
							
								
							 | 
							eqid | 
							 |-  ( le ` K ) = ( le ` K )  | 
						
						
							| 9 | 
							
								8 1
							 | 
							pltle | 
							 |-  ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> ( P .< Q -> P ( le ` K ) Q ) )  | 
						
						
							| 10 | 
							
								8 2
							 | 
							atcmp | 
							 |-  ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> ( P ( le ` K ) Q <-> P = Q ) )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							sylibd | 
							 |-  ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> ( P .< Q -> P = Q ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							necon3ad | 
							 |-  ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> ( P =/= Q -> -. P .< Q ) )  | 
						
						
							| 13 | 
							
								7 12
							 | 
							pm2.61dne | 
							 |-  ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> -. P .< Q )  |