| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							elat2 | 
							 |-  ( A e. HAtoms <-> ( A e. CH /\ ( A =/= 0H /\ A. y e. CH ( y C_ A -> ( y = A \/ y = 0H ) ) ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							chne0 | 
							 |-  ( A e. CH -> ( A =/= 0H <-> E. x e. A x =/= 0h ) )  | 
						
						
							| 3 | 
							
								
							 | 
							nfv | 
							 |-  F/ x A e. CH  | 
						
						
							| 4 | 
							
								
							 | 
							nfv | 
							 |-  F/ x A. y e. CH ( y C_ A -> ( y = A \/ y = 0H ) )  | 
						
						
							| 5 | 
							
								
							 | 
							nfre1 | 
							 |-  F/ x E. x e. ~H ( x =/= 0h /\ A = ( _|_ ` ( _|_ ` { x } ) ) ) | 
						
						
							| 6 | 
							
								4 5
							 | 
							nfim | 
							 |-  F/ x ( A. y e. CH ( y C_ A -> ( y = A \/ y = 0H ) ) -> E. x e. ~H ( x =/= 0h /\ A = ( _|_ ` ( _|_ ` { x } ) ) ) ) | 
						
						
							| 7 | 
							
								
							 | 
							chel | 
							 |-  ( ( A e. CH /\ x e. A ) -> x e. ~H )  | 
						
						
							| 8 | 
							
								7
							 | 
							adantrr | 
							 |-  ( ( A e. CH /\ ( x e. A /\ x =/= 0h ) ) -> x e. ~H )  | 
						
						
							| 9 | 
							
								8
							 | 
							adantrr | 
							 |-  ( ( A e. CH /\ ( ( x e. A /\ x =/= 0h ) /\ A. y e. CH ( y C_ A -> ( y = A \/ y = 0H ) ) ) ) -> x e. ~H )  | 
						
						
							| 10 | 
							
								
							 | 
							simprlr | 
							 |-  ( ( A e. CH /\ ( ( x e. A /\ x =/= 0h ) /\ A. y e. CH ( y C_ A -> ( y = A \/ y = 0H ) ) ) ) -> x =/= 0h )  | 
						
						
							| 11 | 
							
								
							 | 
							h1dn0 | 
							 |-  ( ( x e. ~H /\ x =/= 0h ) -> ( _|_ ` ( _|_ ` { x } ) ) =/= 0H ) | 
						
						
							| 12 | 
							
								7 11
							 | 
							sylan | 
							 |-  ( ( ( A e. CH /\ x e. A ) /\ x =/= 0h ) -> ( _|_ ` ( _|_ ` { x } ) ) =/= 0H ) | 
						
						
							| 13 | 
							
								12
							 | 
							anasss | 
							 |-  ( ( A e. CH /\ ( x e. A /\ x =/= 0h ) ) -> ( _|_ ` ( _|_ ` { x } ) ) =/= 0H ) | 
						
						
							| 14 | 
							
								13
							 | 
							adantrr | 
							 |-  ( ( A e. CH /\ ( ( x e. A /\ x =/= 0h ) /\ A. y e. CH ( y C_ A -> ( y = A \/ y = 0H ) ) ) ) -> ( _|_ ` ( _|_ ` { x } ) ) =/= 0H ) | 
						
						
							| 15 | 
							
								
							 | 
							ch1dle | 
							 |-  ( ( A e. CH /\ x e. A ) -> ( _|_ ` ( _|_ ` { x } ) ) C_ A ) | 
						
						
							| 16 | 
							
								
							 | 
							snssi | 
							 |-  ( x e. ~H -> { x } C_ ~H ) | 
						
						
							| 17 | 
							
								
							 | 
							occl | 
							 |-  ( { x } C_ ~H -> ( _|_ ` { x } ) e. CH ) | 
						
						
							| 18 | 
							
								7 16 17
							 | 
							3syl | 
							 |-  ( ( A e. CH /\ x e. A ) -> ( _|_ ` { x } ) e. CH ) | 
						
						
							| 19 | 
							
								
							 | 
							choccl | 
							 |-  ( ( _|_ ` { x } ) e. CH -> ( _|_ ` ( _|_ ` { x } ) ) e. CH ) | 
						
						
							| 20 | 
							
								
							 | 
							sseq1 | 
							 |-  ( y = ( _|_ ` ( _|_ ` { x } ) ) -> ( y C_ A <-> ( _|_ ` ( _|_ ` { x } ) ) C_ A ) ) | 
						
						
							| 21 | 
							
								
							 | 
							eqeq1 | 
							 |-  ( y = ( _|_ ` ( _|_ ` { x } ) ) -> ( y = A <-> ( _|_ ` ( _|_ ` { x } ) ) = A ) ) | 
						
						
							| 22 | 
							
								
							 | 
							eqeq1 | 
							 |-  ( y = ( _|_ ` ( _|_ ` { x } ) ) -> ( y = 0H <-> ( _|_ ` ( _|_ ` { x } ) ) = 0H ) ) | 
						
						
							| 23 | 
							
								21 22
							 | 
							orbi12d | 
							 |-  ( y = ( _|_ ` ( _|_ ` { x } ) ) -> ( ( y = A \/ y = 0H ) <-> ( ( _|_ ` ( _|_ ` { x } ) ) = A \/ ( _|_ ` ( _|_ ` { x } ) ) = 0H ) ) ) | 
						
						
							| 24 | 
							
								20 23
							 | 
							imbi12d | 
							 |-  ( y = ( _|_ ` ( _|_ ` { x } ) ) -> ( ( y C_ A -> ( y = A \/ y = 0H ) ) <-> ( ( _|_ ` ( _|_ ` { x } ) ) C_ A -> ( ( _|_ ` ( _|_ ` { x } ) ) = A \/ ( _|_ ` ( _|_ ` { x } ) ) = 0H ) ) ) ) | 
						
						
							| 25 | 
							
								24
							 | 
							rspcv | 
							 |-  ( ( _|_ ` ( _|_ ` { x } ) ) e. CH -> ( A. y e. CH ( y C_ A -> ( y = A \/ y = 0H ) ) -> ( ( _|_ ` ( _|_ ` { x } ) ) C_ A -> ( ( _|_ ` ( _|_ ` { x } ) ) = A \/ ( _|_ ` ( _|_ ` { x } ) ) = 0H ) ) ) ) | 
						
						
							| 26 | 
							
								18 19 25
							 | 
							3syl | 
							 |-  ( ( A e. CH /\ x e. A ) -> ( A. y e. CH ( y C_ A -> ( y = A \/ y = 0H ) ) -> ( ( _|_ ` ( _|_ ` { x } ) ) C_ A -> ( ( _|_ ` ( _|_ ` { x } ) ) = A \/ ( _|_ ` ( _|_ ` { x } ) ) = 0H ) ) ) ) | 
						
						
							| 27 | 
							
								15 26
							 | 
							mpid | 
							 |-  ( ( A e. CH /\ x e. A ) -> ( A. y e. CH ( y C_ A -> ( y = A \/ y = 0H ) ) -> ( ( _|_ ` ( _|_ ` { x } ) ) = A \/ ( _|_ ` ( _|_ ` { x } ) ) = 0H ) ) ) | 
						
						
							| 28 | 
							
								27
							 | 
							impr | 
							 |-  ( ( A e. CH /\ ( x e. A /\ A. y e. CH ( y C_ A -> ( y = A \/ y = 0H ) ) ) ) -> ( ( _|_ ` ( _|_ ` { x } ) ) = A \/ ( _|_ ` ( _|_ ` { x } ) ) = 0H ) ) | 
						
						
							| 29 | 
							
								28
							 | 
							adantrlr | 
							 |-  ( ( A e. CH /\ ( ( x e. A /\ x =/= 0h ) /\ A. y e. CH ( y C_ A -> ( y = A \/ y = 0H ) ) ) ) -> ( ( _|_ ` ( _|_ ` { x } ) ) = A \/ ( _|_ ` ( _|_ ` { x } ) ) = 0H ) ) | 
						
						
							| 30 | 
							
								29
							 | 
							ord | 
							 |-  ( ( A e. CH /\ ( ( x e. A /\ x =/= 0h ) /\ A. y e. CH ( y C_ A -> ( y = A \/ y = 0H ) ) ) ) -> ( -. ( _|_ ` ( _|_ ` { x } ) ) = A -> ( _|_ ` ( _|_ ` { x } ) ) = 0H ) ) | 
						
						
							| 31 | 
							
								
							 | 
							nne | 
							 |-  ( -. ( _|_ ` ( _|_ ` { x } ) ) =/= 0H <-> ( _|_ ` ( _|_ ` { x } ) ) = 0H ) | 
						
						
							| 32 | 
							
								30 31
							 | 
							imbitrrdi | 
							 |-  ( ( A e. CH /\ ( ( x e. A /\ x =/= 0h ) /\ A. y e. CH ( y C_ A -> ( y = A \/ y = 0H ) ) ) ) -> ( -. ( _|_ ` ( _|_ ` { x } ) ) = A -> -. ( _|_ ` ( _|_ ` { x } ) ) =/= 0H ) ) | 
						
						
							| 33 | 
							
								14 32
							 | 
							mt4d | 
							 |-  ( ( A e. CH /\ ( ( x e. A /\ x =/= 0h ) /\ A. y e. CH ( y C_ A -> ( y = A \/ y = 0H ) ) ) ) -> ( _|_ ` ( _|_ ` { x } ) ) = A ) | 
						
						
							| 34 | 
							
								33
							 | 
							eqcomd | 
							 |-  ( ( A e. CH /\ ( ( x e. A /\ x =/= 0h ) /\ A. y e. CH ( y C_ A -> ( y = A \/ y = 0H ) ) ) ) -> A = ( _|_ ` ( _|_ ` { x } ) ) ) | 
						
						
							| 35 | 
							
								
							 | 
							rspe | 
							 |-  ( ( x e. ~H /\ ( x =/= 0h /\ A = ( _|_ ` ( _|_ ` { x } ) ) ) ) -> E. x e. ~H ( x =/= 0h /\ A = ( _|_ ` ( _|_ ` { x } ) ) ) ) | 
						
						
							| 36 | 
							
								9 10 34 35
							 | 
							syl12anc | 
							 |-  ( ( A e. CH /\ ( ( x e. A /\ x =/= 0h ) /\ A. y e. CH ( y C_ A -> ( y = A \/ y = 0H ) ) ) ) -> E. x e. ~H ( x =/= 0h /\ A = ( _|_ ` ( _|_ ` { x } ) ) ) ) | 
						
						
							| 37 | 
							
								36
							 | 
							exp44 | 
							 |-  ( A e. CH -> ( x e. A -> ( x =/= 0h -> ( A. y e. CH ( y C_ A -> ( y = A \/ y = 0H ) ) -> E. x e. ~H ( x =/= 0h /\ A = ( _|_ ` ( _|_ ` { x } ) ) ) ) ) ) ) | 
						
						
							| 38 | 
							
								3 6 37
							 | 
							rexlimd | 
							 |-  ( A e. CH -> ( E. x e. A x =/= 0h -> ( A. y e. CH ( y C_ A -> ( y = A \/ y = 0H ) ) -> E. x e. ~H ( x =/= 0h /\ A = ( _|_ ` ( _|_ ` { x } ) ) ) ) ) ) | 
						
						
							| 39 | 
							
								2 38
							 | 
							sylbid | 
							 |-  ( A e. CH -> ( A =/= 0H -> ( A. y e. CH ( y C_ A -> ( y = A \/ y = 0H ) ) -> E. x e. ~H ( x =/= 0h /\ A = ( _|_ ` ( _|_ ` { x } ) ) ) ) ) ) | 
						
						
							| 40 | 
							
								39
							 | 
							imp32 | 
							 |-  ( ( A e. CH /\ ( A =/= 0H /\ A. y e. CH ( y C_ A -> ( y = A \/ y = 0H ) ) ) ) -> E. x e. ~H ( x =/= 0h /\ A = ( _|_ ` ( _|_ ` { x } ) ) ) ) | 
						
						
							| 41 | 
							
								1 40
							 | 
							sylbi | 
							 |-  ( A e. HAtoms -> E. x e. ~H ( x =/= 0h /\ A = ( _|_ ` ( _|_ ` { x } ) ) ) ) | 
						
						
							| 42 | 
							
								
							 | 
							h1da | 
							 |-  ( ( x e. ~H /\ x =/= 0h ) -> ( _|_ ` ( _|_ ` { x } ) ) e. HAtoms ) | 
						
						
							| 43 | 
							
								
							 | 
							eleq1 | 
							 |-  ( A = ( _|_ ` ( _|_ ` { x } ) ) -> ( A e. HAtoms <-> ( _|_ ` ( _|_ ` { x } ) ) e. HAtoms ) ) | 
						
						
							| 44 | 
							
								42 43
							 | 
							imbitrrid | 
							 |-  ( A = ( _|_ ` ( _|_ ` { x } ) ) -> ( ( x e. ~H /\ x =/= 0h ) -> A e. HAtoms ) ) | 
						
						
							| 45 | 
							
								44
							 | 
							expdcom | 
							 |-  ( x e. ~H -> ( x =/= 0h -> ( A = ( _|_ ` ( _|_ ` { x } ) ) -> A e. HAtoms ) ) ) | 
						
						
							| 46 | 
							
								45
							 | 
							impd | 
							 |-  ( x e. ~H -> ( ( x =/= 0h /\ A = ( _|_ ` ( _|_ ` { x } ) ) ) -> A e. HAtoms ) ) | 
						
						
							| 47 | 
							
								46
							 | 
							rexlimiv | 
							 |-  ( E. x e. ~H ( x =/= 0h /\ A = ( _|_ ` ( _|_ ` { x } ) ) ) -> A e. HAtoms ) | 
						
						
							| 48 | 
							
								41 47
							 | 
							impbii | 
							 |-  ( A e. HAtoms <-> E. x e. ~H ( x =/= 0h /\ A = ( _|_ ` ( _|_ ` { x } ) ) ) ) | 
						
						
							| 49 | 
							
								
							 | 
							spansn | 
							 |-  ( x e. ~H -> ( span ` { x } ) = ( _|_ ` ( _|_ ` { x } ) ) ) | 
						
						
							| 50 | 
							
								49
							 | 
							eqeq2d | 
							 |-  ( x e. ~H -> ( A = ( span ` { x } ) <-> A = ( _|_ ` ( _|_ ` { x } ) ) ) ) | 
						
						
							| 51 | 
							
								50
							 | 
							anbi2d | 
							 |-  ( x e. ~H -> ( ( x =/= 0h /\ A = ( span ` { x } ) ) <-> ( x =/= 0h /\ A = ( _|_ ` ( _|_ ` { x } ) ) ) ) ) | 
						
						
							| 52 | 
							
								51
							 | 
							rexbiia | 
							 |-  ( E. x e. ~H ( x =/= 0h /\ A = ( span ` { x } ) ) <-> E. x e. ~H ( x =/= 0h /\ A = ( _|_ ` ( _|_ ` { x } ) ) ) ) | 
						
						
							| 53 | 
							
								48 52
							 | 
							bitr4i | 
							 |-  ( A e. HAtoms <-> E. x e. ~H ( x =/= 0h /\ A = ( span ` { x } ) ) ) |