Step |
Hyp |
Ref |
Expression |
1 |
|
atoml.1 |
|- A e. CH |
2 |
|
atelch |
|- ( B e. HAtoms -> B e. CH ) |
3 |
|
pjoml5 |
|- ( ( A e. CH /\ B e. CH ) -> ( A vH ( ( _|_ ` A ) i^i ( A vH B ) ) ) = ( A vH B ) ) |
4 |
1 2 3
|
sylancr |
|- ( B e. HAtoms -> ( A vH ( ( _|_ ` A ) i^i ( A vH B ) ) ) = ( A vH B ) ) |
5 |
|
incom |
|- ( ( A vH B ) i^i ( _|_ ` A ) ) = ( ( _|_ ` A ) i^i ( A vH B ) ) |
6 |
5
|
eqeq1i |
|- ( ( ( A vH B ) i^i ( _|_ ` A ) ) = 0H <-> ( ( _|_ ` A ) i^i ( A vH B ) ) = 0H ) |
7 |
6
|
biimpi |
|- ( ( ( A vH B ) i^i ( _|_ ` A ) ) = 0H -> ( ( _|_ ` A ) i^i ( A vH B ) ) = 0H ) |
8 |
7
|
oveq2d |
|- ( ( ( A vH B ) i^i ( _|_ ` A ) ) = 0H -> ( A vH ( ( _|_ ` A ) i^i ( A vH B ) ) ) = ( A vH 0H ) ) |
9 |
1
|
chj0i |
|- ( A vH 0H ) = A |
10 |
8 9
|
eqtrdi |
|- ( ( ( A vH B ) i^i ( _|_ ` A ) ) = 0H -> ( A vH ( ( _|_ ` A ) i^i ( A vH B ) ) ) = A ) |
11 |
4 10
|
sylan9req |
|- ( ( B e. HAtoms /\ ( ( A vH B ) i^i ( _|_ ` A ) ) = 0H ) -> ( A vH B ) = A ) |
12 |
11
|
ex |
|- ( B e. HAtoms -> ( ( ( A vH B ) i^i ( _|_ ` A ) ) = 0H -> ( A vH B ) = A ) ) |
13 |
|
chlejb2 |
|- ( ( B e. CH /\ A e. CH ) -> ( B C_ A <-> ( A vH B ) = A ) ) |
14 |
2 1 13
|
sylancl |
|- ( B e. HAtoms -> ( B C_ A <-> ( A vH B ) = A ) ) |
15 |
12 14
|
sylibrd |
|- ( B e. HAtoms -> ( ( ( A vH B ) i^i ( _|_ ` A ) ) = 0H -> B C_ A ) ) |
16 |
15
|
con3d |
|- ( B e. HAtoms -> ( -. B C_ A -> -. ( ( A vH B ) i^i ( _|_ ` A ) ) = 0H ) ) |
17 |
1
|
atomli |
|- ( B e. HAtoms -> ( ( A vH B ) i^i ( _|_ ` A ) ) e. ( HAtoms u. { 0H } ) ) |
18 |
|
elun |
|- ( ( ( A vH B ) i^i ( _|_ ` A ) ) e. ( HAtoms u. { 0H } ) <-> ( ( ( A vH B ) i^i ( _|_ ` A ) ) e. HAtoms \/ ( ( A vH B ) i^i ( _|_ ` A ) ) e. { 0H } ) ) |
19 |
|
h0elch |
|- 0H e. CH |
20 |
19
|
elexi |
|- 0H e. _V |
21 |
20
|
elsn2 |
|- ( ( ( A vH B ) i^i ( _|_ ` A ) ) e. { 0H } <-> ( ( A vH B ) i^i ( _|_ ` A ) ) = 0H ) |
22 |
21
|
orbi2i |
|- ( ( ( ( A vH B ) i^i ( _|_ ` A ) ) e. HAtoms \/ ( ( A vH B ) i^i ( _|_ ` A ) ) e. { 0H } ) <-> ( ( ( A vH B ) i^i ( _|_ ` A ) ) e. HAtoms \/ ( ( A vH B ) i^i ( _|_ ` A ) ) = 0H ) ) |
23 |
|
orcom |
|- ( ( ( ( A vH B ) i^i ( _|_ ` A ) ) e. HAtoms \/ ( ( A vH B ) i^i ( _|_ ` A ) ) = 0H ) <-> ( ( ( A vH B ) i^i ( _|_ ` A ) ) = 0H \/ ( ( A vH B ) i^i ( _|_ ` A ) ) e. HAtoms ) ) |
24 |
18 22 23
|
3bitri |
|- ( ( ( A vH B ) i^i ( _|_ ` A ) ) e. ( HAtoms u. { 0H } ) <-> ( ( ( A vH B ) i^i ( _|_ ` A ) ) = 0H \/ ( ( A vH B ) i^i ( _|_ ` A ) ) e. HAtoms ) ) |
25 |
17 24
|
sylib |
|- ( B e. HAtoms -> ( ( ( A vH B ) i^i ( _|_ ` A ) ) = 0H \/ ( ( A vH B ) i^i ( _|_ ` A ) ) e. HAtoms ) ) |
26 |
25
|
ord |
|- ( B e. HAtoms -> ( -. ( ( A vH B ) i^i ( _|_ ` A ) ) = 0H -> ( ( A vH B ) i^i ( _|_ ` A ) ) e. HAtoms ) ) |
27 |
16 26
|
syld |
|- ( B e. HAtoms -> ( -. B C_ A -> ( ( A vH B ) i^i ( _|_ ` A ) ) e. HAtoms ) ) |
28 |
27
|
imp |
|- ( ( B e. HAtoms /\ -. B C_ A ) -> ( ( A vH B ) i^i ( _|_ ` A ) ) e. HAtoms ) |