| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							atoml.1 | 
							 |-  A e. CH  | 
						
						
							| 2 | 
							
								
							 | 
							atelch | 
							 |-  ( B e. HAtoms -> B e. CH )  | 
						
						
							| 3 | 
							
								
							 | 
							pjoml5 | 
							 |-  ( ( A e. CH /\ B e. CH ) -> ( A vH ( ( _|_ ` A ) i^i ( A vH B ) ) ) = ( A vH B ) )  | 
						
						
							| 4 | 
							
								1 2 3
							 | 
							sylancr | 
							 |-  ( B e. HAtoms -> ( A vH ( ( _|_ ` A ) i^i ( A vH B ) ) ) = ( A vH B ) )  | 
						
						
							| 5 | 
							
								
							 | 
							incom | 
							 |-  ( ( A vH B ) i^i ( _|_ ` A ) ) = ( ( _|_ ` A ) i^i ( A vH B ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							eqeq1i | 
							 |-  ( ( ( A vH B ) i^i ( _|_ ` A ) ) = 0H <-> ( ( _|_ ` A ) i^i ( A vH B ) ) = 0H )  | 
						
						
							| 7 | 
							
								6
							 | 
							biimpi | 
							 |-  ( ( ( A vH B ) i^i ( _|_ ` A ) ) = 0H -> ( ( _|_ ` A ) i^i ( A vH B ) ) = 0H )  | 
						
						
							| 8 | 
							
								7
							 | 
							oveq2d | 
							 |-  ( ( ( A vH B ) i^i ( _|_ ` A ) ) = 0H -> ( A vH ( ( _|_ ` A ) i^i ( A vH B ) ) ) = ( A vH 0H ) )  | 
						
						
							| 9 | 
							
								1
							 | 
							chj0i | 
							 |-  ( A vH 0H ) = A  | 
						
						
							| 10 | 
							
								8 9
							 | 
							eqtrdi | 
							 |-  ( ( ( A vH B ) i^i ( _|_ ` A ) ) = 0H -> ( A vH ( ( _|_ ` A ) i^i ( A vH B ) ) ) = A )  | 
						
						
							| 11 | 
							
								4 10
							 | 
							sylan9req | 
							 |-  ( ( B e. HAtoms /\ ( ( A vH B ) i^i ( _|_ ` A ) ) = 0H ) -> ( A vH B ) = A )  | 
						
						
							| 12 | 
							
								11
							 | 
							ex | 
							 |-  ( B e. HAtoms -> ( ( ( A vH B ) i^i ( _|_ ` A ) ) = 0H -> ( A vH B ) = A ) )  | 
						
						
							| 13 | 
							
								
							 | 
							chlejb2 | 
							 |-  ( ( B e. CH /\ A e. CH ) -> ( B C_ A <-> ( A vH B ) = A ) )  | 
						
						
							| 14 | 
							
								2 1 13
							 | 
							sylancl | 
							 |-  ( B e. HAtoms -> ( B C_ A <-> ( A vH B ) = A ) )  | 
						
						
							| 15 | 
							
								12 14
							 | 
							sylibrd | 
							 |-  ( B e. HAtoms -> ( ( ( A vH B ) i^i ( _|_ ` A ) ) = 0H -> B C_ A ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							con3d | 
							 |-  ( B e. HAtoms -> ( -. B C_ A -> -. ( ( A vH B ) i^i ( _|_ ` A ) ) = 0H ) )  | 
						
						
							| 17 | 
							
								1
							 | 
							atomli | 
							 |-  ( B e. HAtoms -> ( ( A vH B ) i^i ( _|_ ` A ) ) e. ( HAtoms u. { 0H } ) ) | 
						
						
							| 18 | 
							
								
							 | 
							elun | 
							 |-  ( ( ( A vH B ) i^i ( _|_ ` A ) ) e. ( HAtoms u. { 0H } ) <-> ( ( ( A vH B ) i^i ( _|_ ` A ) ) e. HAtoms \/ ( ( A vH B ) i^i ( _|_ ` A ) ) e. { 0H } ) ) | 
						
						
							| 19 | 
							
								
							 | 
							h0elch | 
							 |-  0H e. CH  | 
						
						
							| 20 | 
							
								19
							 | 
							elexi | 
							 |-  0H e. _V  | 
						
						
							| 21 | 
							
								20
							 | 
							elsn2 | 
							 |-  ( ( ( A vH B ) i^i ( _|_ ` A ) ) e. { 0H } <-> ( ( A vH B ) i^i ( _|_ ` A ) ) = 0H ) | 
						
						
							| 22 | 
							
								21
							 | 
							orbi2i | 
							 |-  ( ( ( ( A vH B ) i^i ( _|_ ` A ) ) e. HAtoms \/ ( ( A vH B ) i^i ( _|_ ` A ) ) e. { 0H } ) <-> ( ( ( A vH B ) i^i ( _|_ ` A ) ) e. HAtoms \/ ( ( A vH B ) i^i ( _|_ ` A ) ) = 0H ) ) | 
						
						
							| 23 | 
							
								
							 | 
							orcom | 
							 |-  ( ( ( ( A vH B ) i^i ( _|_ ` A ) ) e. HAtoms \/ ( ( A vH B ) i^i ( _|_ ` A ) ) = 0H ) <-> ( ( ( A vH B ) i^i ( _|_ ` A ) ) = 0H \/ ( ( A vH B ) i^i ( _|_ ` A ) ) e. HAtoms ) )  | 
						
						
							| 24 | 
							
								18 22 23
							 | 
							3bitri | 
							 |-  ( ( ( A vH B ) i^i ( _|_ ` A ) ) e. ( HAtoms u. { 0H } ) <-> ( ( ( A vH B ) i^i ( _|_ ` A ) ) = 0H \/ ( ( A vH B ) i^i ( _|_ ` A ) ) e. HAtoms ) ) | 
						
						
							| 25 | 
							
								17 24
							 | 
							sylib | 
							 |-  ( B e. HAtoms -> ( ( ( A vH B ) i^i ( _|_ ` A ) ) = 0H \/ ( ( A vH B ) i^i ( _|_ ` A ) ) e. HAtoms ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							ord | 
							 |-  ( B e. HAtoms -> ( -. ( ( A vH B ) i^i ( _|_ ` A ) ) = 0H -> ( ( A vH B ) i^i ( _|_ ` A ) ) e. HAtoms ) )  | 
						
						
							| 27 | 
							
								16 26
							 | 
							syld | 
							 |-  ( B e. HAtoms -> ( -. B C_ A -> ( ( A vH B ) i^i ( _|_ ` A ) ) e. HAtoms ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							imp | 
							 |-  ( ( B e. HAtoms /\ -. B C_ A ) -> ( ( A vH B ) i^i ( _|_ ` A ) ) e. HAtoms )  |