| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							atoml.1 | 
							 |-  A e. CH  | 
						
						
							| 2 | 
							
								
							 | 
							atelch | 
							 |-  ( B e. HAtoms -> B e. CH )  | 
						
						
							| 3 | 
							
								1
							 | 
							choccli | 
							 |-  ( _|_ ` A ) e. CH  | 
						
						
							| 4 | 
							
								
							 | 
							chincl | 
							 |-  ( ( ( _|_ ` A ) e. CH /\ B e. CH ) -> ( ( _|_ ` A ) i^i B ) e. CH )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							mpan | 
							 |-  ( B e. CH -> ( ( _|_ ` A ) i^i B ) e. CH )  | 
						
						
							| 6 | 
							
								
							 | 
							chj0 | 
							 |-  ( ( ( _|_ ` A ) i^i B ) e. CH -> ( ( ( _|_ ` A ) i^i B ) vH 0H ) = ( ( _|_ ` A ) i^i B ) )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							syl | 
							 |-  ( B e. CH -> ( ( ( _|_ ` A ) i^i B ) vH 0H ) = ( ( _|_ ` A ) i^i B ) )  | 
						
						
							| 8 | 
							
								
							 | 
							incom | 
							 |-  ( ( _|_ ` A ) i^i B ) = ( B i^i ( _|_ ` A ) )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							eqtrdi | 
							 |-  ( B e. CH -> ( ( ( _|_ ` A ) i^i B ) vH 0H ) = ( B i^i ( _|_ ` A ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							h0elch | 
							 |-  0H e. CH  | 
						
						
							| 11 | 
							
								
							 | 
							chjcom | 
							 |-  ( ( ( ( _|_ ` A ) i^i B ) e. CH /\ 0H e. CH ) -> ( ( ( _|_ ` A ) i^i B ) vH 0H ) = ( 0H vH ( ( _|_ ` A ) i^i B ) ) )  | 
						
						
							| 12 | 
							
								5 10 11
							 | 
							sylancl | 
							 |-  ( B e. CH -> ( ( ( _|_ ` A ) i^i B ) vH 0H ) = ( 0H vH ( ( _|_ ` A ) i^i B ) ) )  | 
						
						
							| 13 | 
							
								9 12
							 | 
							eqtr3d | 
							 |-  ( B e. CH -> ( B i^i ( _|_ ` A ) ) = ( 0H vH ( ( _|_ ` A ) i^i B ) ) )  | 
						
						
							| 14 | 
							
								
							 | 
							incom | 
							 |-  ( ( _|_ ` A ) i^i A ) = ( A i^i ( _|_ ` A ) )  | 
						
						
							| 15 | 
							
								1
							 | 
							chocini | 
							 |-  ( A i^i ( _|_ ` A ) ) = 0H  | 
						
						
							| 16 | 
							
								14 15
							 | 
							eqtri | 
							 |-  ( ( _|_ ` A ) i^i A ) = 0H  | 
						
						
							| 17 | 
							
								16
							 | 
							oveq1i | 
							 |-  ( ( ( _|_ ` A ) i^i A ) vH ( ( _|_ ` A ) i^i B ) ) = ( 0H vH ( ( _|_ ` A ) i^i B ) )  | 
						
						
							| 18 | 
							
								13 17
							 | 
							eqtr4di | 
							 |-  ( B e. CH -> ( B i^i ( _|_ ` A ) ) = ( ( ( _|_ ` A ) i^i A ) vH ( ( _|_ ` A ) i^i B ) ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							adantr | 
							 |-  ( ( B e. CH /\ A C_H B ) -> ( B i^i ( _|_ ` A ) ) = ( ( ( _|_ ` A ) i^i A ) vH ( ( _|_ ` A ) i^i B ) ) )  | 
						
						
							| 20 | 
							
								1
							 | 
							cmidi | 
							 |-  A C_H A  | 
						
						
							| 21 | 
							
								1 1 20
							 | 
							cmcm2ii | 
							 |-  A C_H ( _|_ ` A )  | 
						
						
							| 22 | 
							
								
							 | 
							fh2 | 
							 |-  ( ( ( ( _|_ ` A ) e. CH /\ A e. CH /\ B e. CH ) /\ ( A C_H ( _|_ ` A ) /\ A C_H B ) ) -> ( ( _|_ ` A ) i^i ( A vH B ) ) = ( ( ( _|_ ` A ) i^i A ) vH ( ( _|_ ` A ) i^i B ) ) )  | 
						
						
							| 23 | 
							
								21 22
							 | 
							mpanr1 | 
							 |-  ( ( ( ( _|_ ` A ) e. CH /\ A e. CH /\ B e. CH ) /\ A C_H B ) -> ( ( _|_ ` A ) i^i ( A vH B ) ) = ( ( ( _|_ ` A ) i^i A ) vH ( ( _|_ ` A ) i^i B ) ) )  | 
						
						
							| 24 | 
							
								1 23
							 | 
							mp3anl2 | 
							 |-  ( ( ( ( _|_ ` A ) e. CH /\ B e. CH ) /\ A C_H B ) -> ( ( _|_ ` A ) i^i ( A vH B ) ) = ( ( ( _|_ ` A ) i^i A ) vH ( ( _|_ ` A ) i^i B ) ) )  | 
						
						
							| 25 | 
							
								3 24
							 | 
							mpanl1 | 
							 |-  ( ( B e. CH /\ A C_H B ) -> ( ( _|_ ` A ) i^i ( A vH B ) ) = ( ( ( _|_ ` A ) i^i A ) vH ( ( _|_ ` A ) i^i B ) ) )  | 
						
						
							| 26 | 
							
								19 25
							 | 
							eqtr4d | 
							 |-  ( ( B e. CH /\ A C_H B ) -> ( B i^i ( _|_ ` A ) ) = ( ( _|_ ` A ) i^i ( A vH B ) ) )  | 
						
						
							| 27 | 
							
								2 26
							 | 
							sylan | 
							 |-  ( ( B e. HAtoms /\ A C_H B ) -> ( B i^i ( _|_ ` A ) ) = ( ( _|_ ` A ) i^i ( A vH B ) ) )  | 
						
						
							| 28 | 
							
								
							 | 
							incom | 
							 |-  ( ( _|_ ` A ) i^i ( A vH B ) ) = ( ( A vH B ) i^i ( _|_ ` A ) )  | 
						
						
							| 29 | 
							
								27 28
							 | 
							eqtrdi | 
							 |-  ( ( B e. HAtoms /\ A C_H B ) -> ( B i^i ( _|_ ` A ) ) = ( ( A vH B ) i^i ( _|_ ` A ) ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							adantr | 
							 |-  ( ( ( B e. HAtoms /\ A C_H B ) /\ -. B C_ A ) -> ( B i^i ( _|_ ` A ) ) = ( ( A vH B ) i^i ( _|_ ` A ) ) )  | 
						
						
							| 31 | 
							
								1
							 | 
							atoml2i | 
							 |-  ( ( B e. HAtoms /\ -. B C_ A ) -> ( ( A vH B ) i^i ( _|_ ` A ) ) e. HAtoms )  | 
						
						
							| 32 | 
							
								31
							 | 
							adantlr | 
							 |-  ( ( ( B e. HAtoms /\ A C_H B ) /\ -. B C_ A ) -> ( ( A vH B ) i^i ( _|_ ` A ) ) e. HAtoms )  | 
						
						
							| 33 | 
							
								30 32
							 | 
							eqeltrd | 
							 |-  ( ( ( B e. HAtoms /\ A C_H B ) /\ -. B C_ A ) -> ( B i^i ( _|_ ` A ) ) e. HAtoms )  | 
						
						
							| 34 | 
							
								
							 | 
							atssma | 
							 |-  ( ( B e. HAtoms /\ ( _|_ ` A ) e. CH ) -> ( B C_ ( _|_ ` A ) <-> ( B i^i ( _|_ ` A ) ) e. HAtoms ) )  | 
						
						
							| 35 | 
							
								3 34
							 | 
							mpan2 | 
							 |-  ( B e. HAtoms -> ( B C_ ( _|_ ` A ) <-> ( B i^i ( _|_ ` A ) ) e. HAtoms ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							ad2antrr | 
							 |-  ( ( ( B e. HAtoms /\ A C_H B ) /\ -. B C_ A ) -> ( B C_ ( _|_ ` A ) <-> ( B i^i ( _|_ ` A ) ) e. HAtoms ) )  | 
						
						
							| 37 | 
							
								33 36
							 | 
							mpbird | 
							 |-  ( ( ( B e. HAtoms /\ A C_H B ) /\ -. B C_ A ) -> B C_ ( _|_ ` A ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							ex | 
							 |-  ( ( B e. HAtoms /\ A C_H B ) -> ( -. B C_ A -> B C_ ( _|_ ` A ) ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							orrd | 
							 |-  ( ( B e. HAtoms /\ A C_H B ) -> ( B C_ A \/ B C_ ( _|_ ` A ) ) )  |